90 research outputs found

    Timing of autonomous driving software: problem analysis and prospects for future solutions

    Get PDF
    The software used to implement advanced functionalities in critical domains (e.g. autonomous operation) impairs software timing. This is not only due to the complexity of the underlying high-performance hardware deployed to provide the required levels of computing performance, but also due to the complexity, non-deterministic nature, and huge input space of the artificial intelligence (AI) algorithms used. In this paper, we focus on Apollo, an industrial-quality Autonomous Driving (AD) software framework: we statistically characterize its observed execution time variability and reason on the sources behind it. We discuss the main challenges and limitations in finding a satisfactory software timing analysis solution for Apollo and also show the main traits for the acceptability of statistical timing analysis techniques as a feasible path. While providing a consolidated solution for the software timing analysis of Apollo is a huge effort far beyond the scope of a single research paper, our work aims to set the basis for future and more elaborated techniques for the timing analysis of AD software.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the SuPerCom European Research Council (ERC) project under the European Union’s Horizon 2020 research and innovation programme (grant agreement No.772773), and the HiPEAC Network of Excellence. MINECO partially supported Enrico Mezzetti under Juan de la Cierva-Incorporación postdoctoral fellowship (IJCI-2016-27396), and Leonidas Kosmidis under Juan de la Cierva-Formación postdoctoral fellowship (FJCI-2017-34095).Peer ReviewedPostprint (author's final draft

    캘리브레이션이 필요없는 위상고정 루프의 설계

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 김재하.A PVT-insensitive-bandwidth PLL and a chirp frequency synthesizer PLL are proposed using a constant-relative-gain digitally-controlled oscillator (DCO), a constant-gain time-to-digital converter (TDC), and a simple digital loop filter (DLF) without an explicit calibration or additional circuit components. A digital LC-PLL that realizes a PVT-insensitive loop bandwidth (BW) by using the constant-relative-gain LC-DCO and constant-gain TDC is proposed. In other words, based on ratiometric circuit designs, the LC-DCO can make a fixed percent change to its frequency for a unit change in its digital input and the TDC can maintain a fixed range and resolution measured in reference unit intervals (UIs) across PVT variations. With such LC-DCO and TDC, the proposed PLL can realize a bandwidth which is a constant fraction of the reference frequency even with a simple proportional-integral digital loop filter without any explicit calibration loops. The prototype digital LC-PLL fabricated in a 28-nm CMOS demonstrates a frequency range of 8.38~9.34 GHz and 652-fs,rms integrated jitter from 10-kHz to 1-GHz at 8.84-GHz while dissipating 15.2-mW and occupying 0.24-mm^2. Also, the PLL across three different die samples and supply voltage ranging from 1.0 to 1.2V demonstrates a nearly constant BW at 822-kHz with the variation of ±4.25-% only. A chirp frequency synthesizer PLL (FS-PLL) that is capable of precise triangular frequency modulation using type-III digital LC-PLL architecture for X-band FMCW imaging radar is proposed. By employing a phase-modulating two-point modulation (TPM), constant-gain TDC, and a simple second-order DLF with polarity-alternating frequency ramp estimator, the PLL achieves a gain self-tracking TPM realizing a frequency chirp with fast chirp slope (=chirp BW/chirp period) without increasing frequency errors around the turn-around points, degrading the effective resolution achievable. A prototype chirp FS-PLL fabricated in a 65nm CMOS demonstrates that the PLL can generate a precise triangular chirp profile centered at 8.9-GHz with 940-MHz bandwidth and 28.8-us period with only 1.9-MHz,rms frequency error including the turn-around points and 14.8-mW power dissipation. The achieved 32.63-MHz/us chirp slope is higher than that of FMCW FS-PLLs previously reported by 2.6x.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 CONVENTIONAL PHASE-LOCKED LOOP 7 2.1 CHARGE-PUMP PLL 7 2.1.1 OPERATING PRINCIPLE 7 2.1.2 LOOP DYNAMICS 9 2.2 DIGITAL PLL 10 2.2.1 OPERATING PRINCIPLE 11 2.2.2 LOOP DYNAMICS 12 CHAPTER 3 VARIATIONS ON PHASE-LOCKED LOOP 14 3.1 OSCILLATOR GAIN VARIATION 14 3.1.1 RING VOLTAGE-CONTROLLED OSCILLATOR 15 3.1.2 LC VOLTAGE-CONTROLLED OSCILLATOR 17 3.1.3 LC DIGITALLY-CONTROLLED OSCILLATOR 19 3.2 PHASE DETECTOR GAIN VARIATION 20 3.2.1 LINEAR PHASE DETECTOR 20 3.2.2 LINEAR TIME-TO-DIGITAL CONVERTER 21 CHAPTER 4 PROPOSED DCO AND TDC FOR CALIBRATION-FREE PLL 23 4.1 DIGTALLY-CONTROLLED OSCILLATOR (DCO) 25 4.1.1 OVERVIEW 24 4.1.2 CONSTANT-RELATIVE-GAIN DCO 26 4.2 TIME-TO-DIGITAL CONVERTER (TDC) 28 4.2.1 OVERVIEW 28 4.2.2 CONSTANT-GAIN TDC 30 CHAPTER 5 PVT-INSENSITIVE-BANDWIDTH PLL 35 5.1 OVERVIEW 36 5.2 PRIOR WORKS 37 5.3 PROPOSED PVT-INSENSITIVE-BANDWIDTH PLL 39 5.4 CIRCUIT IMPLEMENTATION 41 5.4.1 CAPACITOR-TUNED LC-DCO 41 5.4.2 TRANSFORMER-TUNED LC-DCO 45 5.4.3 OVERSAMPLING-BASED CONSTANT-GAIN TDC 49 5.4.4 PHASE DIGITAL-TO-ANALOG CONVERTER 52 5.4.5 DIGITAL LOOP FILTER 54 5.4.6 FREQUENCY DIVIDER 55 5.4.7 BANG-BANG PHASE-FREQUENCY DETECTOR 56 5.5 CELL-BASED DESIGN FLOW 57 5.6 MEASUREMENT RESULTS 58 CHAPTER 6 CHIRP FREQUENCY SYNTHESIZER PLL 66 6.1 OVERVIEW 67 6.2 PRIOR WORKS 71 6.3 PROPOSED CHIRP FREQUENCY SYNTHESIZER PLL 75 6.4 CIRCUIT IMPLEMENTATION 83 6.4.1 SECOND-ORDER DIGITAL LOOP FILTER 83 6.4.2 PHASE MODULATOR 84 6.4.3 CONSTANT-GAIN TDC 85 6.4.4 VRACTOR-BASED LC-DCO 87 6.4.5 OVERALL CLOCK CHAIN 90 6.5 MEASUREMENT RESULTS 91 6.6 SIGNAL-TO-NOISE RATIO OF RADAR 98 CHAPTER 7 CONCLUSION 100 BIBLIOGRAPHY 102 초록 109Docto

    Estimation Techniques for State of Charge in Battery Management Systems on Board of Hybrid Electric Vehicles Implemented in a Real-Time MATLAB/SIMULINK Environment

    Get PDF
    The battery state-of-charge estimation is essential in automotive industry for a successful marketing of both electric and hybrid electric vehicles. Furthermore, the state-of-charge of a battery is a critical condition parameter for battery management system. In this research work we share from the experience accumulated in control systems applications field some preliminary results, especially in modeling and state estimation techniques, very useful for state-of-charge estimation of the rechargeable batteries with different chemistries. We investigate the design and the effectiveness of three nonlinear state-of-charge estimators implemented in a real-time MATLAB environment for a particular Li-Ion battery, such as an Unscented Kalman Filter, Particle filter, and a nonlinear observer. Finally, the target to be accomplished is to find the most suitable estimator in terms of performance accuracy and robustness

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Enabling low cost test and tuning of difficult-to-measure device specifications: application to DC-DC converters and high speed devices

    Get PDF
    Low-cost test and tuning methods for difficult-to-measure specifications are presented in this research from the following perspectives: 1)"Safe" test and self-tuning for power converters: To avoid the risk of device under test (DUT) damage during conventional load/line regulation measurement on power converter, a "safe" alternate test structure is developed where the power converter (boost/buck converter) is placed in a different mode of operation during alternative test (light switching load) as opposed to standard test (heavy switching load) to prevent damage to the DUT during manufacturing test. Based on the alternative test structure, self-tuning methods for both boost and buck converters are also developed in this thesis. In addition, to make these test structures suitable for on-chip built-in self-test (BIST) application, a special sensing circuit has been designed and implemented. Stability analysis filters and appropriate models are also implemented to predict the DUT’s electrical stability condition during test and to further predict the values of tuning knobs needed for the tuning process. 2) High bandwidth RF signal generation: Up-convertion has been widely used in high frequency RF signal generation but mixer nonlinearity results in signal distortion that is difficult to eliminate with such methods. To address this problem, a framework for low-cost high-fidelity wideband RF signal generation is developed in this thesis. Depending on the band-limited target waveform, the input data for two interleaved DACs (digital-to-analog converters) system is optimized by a matrix-model-based algorithm in such a way that it minimizes the distortion between one of its image replicas in the frequency domain and the target RF waveform within a specified signal bandwidth. The approach is used to demonstrate how interferers with specified frequency characteristics can be synthesized at low cost for interference testing of RF communications systems. The frameworks presented in this thesis have a significant impact in enabling low-cost test and tuning of difficult-to-measure device specifications for power converter and high-speed devices.Ph.D

    Fine-grained Energy and Thermal Management using Real-time Power Sensors

    Get PDF
    With extensive use of battery powered devices such as smartphones, laptops an

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Design of energy efficient high speed I/O interfaces

    Get PDF
    Energy efficiency has become a key performance metric for wireline high speed I/O interfaces. Consequently, design of low power I/O interfaces has garnered large interest that has mostly been focused on active power reduction techniques at peak data rate. In practice, most systems exhibit a wide range of data transfer patterns. As a result, low energy per bit operation at peak data rate does not necessarily translate to overall low energy operation. Therefore, I/O interfaces that can scale their power consumption with data rate requirement are desirable. Rapid on-off I/O interfaces have a potential to scale power with data rate requirements without severely affecting either latency or the throughput of the I/O interface. In this work, we explore circuit techniques for designing rapid on-off high speed wireline I/O interfaces and digital fractional-N PLLs. A burst-mode transmitter suitable for rapid on-off I/O interfaces is presented that achieves 6 ns turn-on time by utilizing a fast frequency settling ring oscillator in digital multiplying delay-locked loop and a rapid on-off biasing scheme for current mode output driver. Fabricated in 90 nm CMOS process, the prototype achieves 2.29 mW/Gb/s energy efficiency at peak data rate of 8 Gb/s. A 125X (8 Gb/s to 64 Mb/s) change in effective data rate results in 67X (18.29 mW to 0.27 mW) change in transmitter power consumption corresponding to only 2X (2.29 mW/Gb/s to 4.24 mW/Gb/s) degradation in energy efficiency for 32-byte long data bursts. We also present an analytical bit error rate (BER) computation technique for this transmitter under rapid on-off operation, which uses MDLL settling measurement data in conjunction with always-on transmitter measurements. This technique indicates that the BER bathtub width for 10^(−12) BER is 0.65 UI and 0.72 UI during rapid on-off operation and always-on operation, respectively. Next, a pulse response estimation-based technique is proposed enabling burst-mode operation for baud-rate sampling receivers that operate over high loss channels. Such receivers typically employ discrete time equalization to combat inter-symbol interference. Implementation details are provided for a receiver chip, fabricated in 65nm CMOS technology, that demonstrates efficacy of the proposed technique. A low complexity pulse response estimation technique is also presented for low power receivers that do not employ discrete time equalizers. We also present techniques for implementation of highly digital fractional-N PLL employing a phase interpolator based fractional divider to improve the quantization noise shaping properties of a 1-bit ∆Σ frequency-to-digital converter. Fabricated in 65nm CMOS process, the prototype calibration-free fractional-N Type-II PLL employs the proposed frequency-to-digital converter in place of a high resolution time-to-digital converter and achieves 848 fs rms integrated jitter (1 kHz-30 MHz) and -101 dBc/Hz in-band phase noise while generating 5.054 GHz output from 31.25 MHz input
    corecore