15,084 research outputs found

    Colloidal electrophoresis: Scaling analysis, Green-Kubo relation, and numerical results

    Full text link
    We consider electrophoresis of a single charged colloidal particle in a finite box with periodic boundary conditions, where added counterions and salt ions ensure charge neutrality. A systematic rescaling of the electrokinetic equations allows us to identify a minimum set of suitable dimensionless parameters, which, within this theoretical framework, determine the reduced electrophoretic mobility. It turns out that the salt-free case can, on the Mean Field level, be described in terms of just three parameters. A fourth parameter, which had previously been identified on the basis of straightforward dimensional analysis, can only be important beyond Mean Field. More complicated behavior is expected to arise when further ionic species are added. However, for a certain parameter regime, we can demonstrate that the salt-free case can be mapped onto a corresponding system containing additional salt. The Green-Kubo formula for the electrophoretic mobility is derived, and its usefulness demonstrated by simulation data. Finally, we report on finite-element solutions of the electrokinetic equations, using the commercial software package COMSOL.Comment: To appear in Journal of Physics: Condensed Matter - special issue on occasion of the CODEF 2008 conferenc

    Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    Full text link
    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that the label's drag coefficient is determined by its hydrodynamic size, and that the drag per label monomer is largest for linear labels. However, the addition of side chains to a linear label offers the possibility to increase the hydrodynamic size, and therefore the label efficiency, without having to increase the linear length of the label, thereby simplifying synthesis. The third class of labels investigated, transiently bound micelles, seems very promising for the usage in ELFSE, as they provide a significant higher hydrodynamic drag than the other label types. The results are compared to theoretical predictions, and we investigate how the efficiency of the ELFSE method can be improved by using smartly designed drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule

    DNA electrophoresis studied with the cage model

    Get PDF
    The cage model for polymer reptation, proposed by Evans and Edwards, and its recent extension to model DNA electrophoresis, are studied by numerically exact computation of the drift velocities for polymers with a length L of up to 15 monomers. The computations show the Nernst-Einstein regime (v ~ E) followed by a regime where the velocity decreases exponentially with the applied electric field strength. In agreement with de Gennes' reptation arguments, we find that asymptotically for large polymers the diffusion coefficient D decreases quadratically with polymer length; for the cage model, the proportionality coefficient is DL^2=0.175(2). Additionally we find that the leading correction term for finite polymer lengths scales as N^{-1/2}, where N=L-1 is the number of bonds.Comment: LaTeX (cjour.cls), 15 pages, 6 figures, added correctness proof of kink representation approac

    Dielectrophoresis of nanocolloids: a molecular dynamics study

    Full text link
    Dielectrophoresis (DEP), the motion of polarizable particles in non-uniform electric fields, has become an important tool for the transport, separation, and characterization of microparticles in biomedical and nanoelectronics research. In this article we present, to our knowledge, the first molecular dynamics simulations of DEP of nanometer-sized colloidal particles. We introduce a simplified model for polarizable nanoparticles, consisting of a large charged macroion and oppositely charged microions, in an explicit solvent. The model is then used to study DEP motion of the particle at different combinations of temperature and electric field strength. In accord with linear response theory, the particle drift velocities are shown to be proportional to the DEP force. Analysis of the colloid DEP mobility shows a clear time dependence, demonstrating the variation of friction under non-equilibrium. The time dependence of the mobility further results in an apparent weak variation of the DEP displacements with temperature

    Electrokinetic Lattice Boltzmann solver coupled to Molecular Dynamics: application to polymer translocation

    Full text link
    We develop a theoretical and computational approach to deal with systems that involve a disparate range of spatio-temporal scales, such as those comprised of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is based on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multi-component Lattice Boltzmann. The two techniques are coupled together to allow for a seamless exchange of information between the descriptions. Being based on a kinetic multi-component description of the fluid species, the scheme is flexible in modeling charge flow within complex geometries and ranging from large to vanishing salt concentration. The details of the scheme are presented and the method is applied to the problem of translocation of a charged polymer through a nanopores. In the end, we discuss the advantages and complexities of the approach

    Gel Electrophoresis of DNA Knots in Weak and Strong Electric Fields

    Get PDF
    Gel electrophoresis allows to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a simple Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the type of knot and on the electric field intensity was investigated. The results are in qualitative agreement with electrophoretic experiments done under conditions of low and high electric fields: especially the inversion of the behavior from low to high electric field could be reproduced. The knot topology imposes on the problem the constrain of self-avoidance, which is the final cause of the observed behavior in strong electric field.Comment: 17 pages, 5 figure

    Overcharging of DNA in the presence of salt: Theory and Simulation

    Get PDF
    A study of a model rod-like polyelectrolyte molecule immersed into a monovalent or divalent electrolyte is presented. Results from the hypernetted-chain/mean spherical approximation (HNC/MSA) theory, for inhomogeneous charged fluids, {\ch are} compared with molecular dynamics (MD) simulations. As a particular case, the parameters of the polyelectrolyte molecule are mapped to those of a DNA molecule. An excellent qualitative, and in some cases quantitative, agreement between HNC/MSA and MD is found. Both, HNC/MSA and MD, predict the occurrence of overcharging, which is not present in the Poisson-Boltzmann theory. Mean electrostatic potential and local concentration profiles, ζ\zeta-potential and charge distribution functions are obtained and discussed in terms of the observed overcharging effect. Particularly interesting results are a very non-monotonic behavior of the ζ\zeta-potential, as a function of the rod charge density, and the overcharging by {\em monovalent} counterions.Comment: 11 pages, 8 figures, RevTex, published in J. Phys. Chem. B 2001, vol. 105, pags. 1098
    corecore