446 research outputs found

    Bipolar disorders

    Get PDF
    Bipolar disorder is characterized by (hypo)manic episodes and depressive episodes which alternate with euthymic periods. It causes serious disability with poor outcome, increased suicidality risk, and significant societal costs. This chapter describes the findings of the PET/SPECT research efforts and the current ideas on the pathophysiology of bipolar disorder. First, the cerebral blood flow and cerebral metabolism findings in the prefrontal cortex, limbic system, subcortical structures, and other brain regions are discussed, followed by an overview of the corticolimbic theory of mood disorders that explains these observations. Second, the neurotransmitter studies are discussed. The serotonin transporter alterations are described, and the variation in study results is explained, followed by an overview of the results of the various dopamine receptor and transporter molecules studies, taking into account also the relation to psychosis. Third, a concise overview is given of dominant bipolar disorder pathophysiological models, proposing starting points for future molecular imaging studies. Finally, the most important conclusions are summarized, followed by remarks about the observed molecular imaging study designs specific for bipolar disorder.</p

    Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression

    Get PDF
    The neural networks that putatively modulate aspects of normal emotional behavior have been implicated in the pathophysiology of mood disorders by converging evidence from neuroimaging, neuropathological and lesion analysis studies. These networks involve the medial prefrontal cortex (MPFC) and closely related areas in the medial and caudolateral orbital cortex (medial prefrontal network), amygdala, hippocampus, and ventromedial parts of the basal ganglia, where alterations in grey matter volume and neurophysiological activity are found in cases with recurrent depressive episodes. Such findings hold major implications for models of the neurocircuits that underlie depression. In particular evidence from lesion analysis studies suggests that the MPFC and related limbic and striato-pallido-thalamic structures organize emotional expression. The MPFC is part of a larger “default system” of cortical areas that include the dorsal PFC, mid- and posterior cingulate cortex, anterior temporal cortex, and entorhinal and parahippocampal cortex, which has been implicated in self-referential functions. Dysfunction within and between structures in this circuit may induce disturbances in emotional behavior and other cognitive aspects of depressive syndromes in humans. Further, because the MPFC and related limbic structures provide forebrain modulation over visceral control structures in the hypothalamus and brainstem, their dysfunction can account for the disturbances in autonomic regulation and neuroendocrine responses that are associated with mood disorders. This paper discusses these systems together with the neurochemical systems that impinge on them and form the basis for most pharmacological therapies

    Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play

    Get PDF
    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders

    The Center for Integrated Molecular Brain Imaging (Cimbi) database

    Get PDF
    AbstractWe here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions related to the serotonergic transmitter system with its normative data on the serotonergic subtype receptors 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 and the 5-HT transporter (5-HTT), but can easily serve other purposes.The Cimbi database and Cimbi biobank were formally established in 2008 with the purpose to store the wealth of Cimbi-acquired data in a highly structured and standardized manner in accordance with the regulations issued by the Danish Data Protection Agency as well as to provide a quality-controlled resource for future hypothesis-generating and hypothesis-driven studies.The Cimbi database currently comprises a total of 1100 PET and 1000 structural and functional MRI scans and it holds a multitude of additional data, such as genetic and biochemical data, and scores from 17 self-reported questionnaires and from 11 neuropsychological paper/computer tests. The database associated Cimbi biobank currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank

    Neuroinflammation and Psychiatric Illness

    Get PDF
    Multiple lines of evidence support the pathogenic role of neuroinflammation in psychiatric illness. While systemic autoimmune diseases are well-documented causes of neuropsychiatric disorders, synaptic autoimmune encephalitides with psychotic symptoms often go under-recognized. Parallel to the link between psychiatric symptoms and autoimmunity in autoimmune diseases, neuroimmunological abnormalities occur in classical psychiatric disorders (for example, major depressive, bipolar, schizophrenia, and obsessive-compulsive disorders). Investigations into the pathophysiology of these conditions traditionally stressed dysregulation of the glutamatergic and monoaminergic systems, but the mechanisms causing these neurotransmitter abnormalities remained elusive. We review the link between autoimmunity and neuropsychiatric disorders, and the human and experimental evidence supporting the pathogenic role of neuroinflammation in selected classical psychiatric disorders. Understanding how psychosocial, genetic, immunological and neurotransmitter systems interact can reveal pathogenic clues and help target new preventive and symptomatic therapies

    Insight into susceptibility genes associated with bipolar disorder: A systematic review

    Get PDF
    Objective: Bipolar disorder (BD) is a severe disorder, and it is associated with an increased risk of mortality. About 25% of patients with BD have attempted and 11% have died by suicide. All these characteristics suggest that the disorders within the bipolar spectrum are a crucial public health problem. With the development of molecular genetics in recent decades, it was possible to more easily detect risk genes associated with this disorder. This study aimed at summarizing the findings of systematic reviews and meta-analyses on the topic and assessing the quality of the available evidence. Materials and Methods: PubMed/Medline and Web of Science were searched to identify systematic reviews and meta-analyses published during 2013-2019. Standard methodology was applied to synthesize and assess the retrieved literature. Results: This systematic review identifies a number of potential risk genes associated with bipolar disorder whose mechanism of action has yet to be confirmed. They are divided into several groups: 1) a list of the most significant susceptibility genetic factors associated with BD; 2) the implication of the ZNF804A gene in BD; 3) the role of genes involved in calcium signaling in BD; 4) DNA methylation in BD; 5) BD and risk suicide genes; 6) susceptibility genes for early-onset BD; 7) candidate genes common to both BD and schizophrenia; 8) genes involved in cognitive status in BD cases; 9) genes involved in structural alteration in BD brain tissue; 10) genes involved in lithium response in BD. Conclusions: Future research should concentrate on molecular mechanisms by which genetic variants play a major role in BD. Supplemental research is needed to replicate the applicable results
    corecore