5,562 research outputs found

    Next-generation air-navigation displays

    Get PDF
    Future airplanes could be fitted with several short-throw wide-angle LED projectors to create a seamless tiled cockpit interactive air-navigation display

    HIGH CONTRAST LIQUID CRYSTAL POLARIZATION HOLOGRAMS

    Get PDF
    Methods and systems for using narrow band angular filters or reflectors to reflect or filter out satellite diffraction orders for manufacturing of target optical components to propagate target diffraction orders into a waveguide are provided. The system may include a light source for directing light into a liquid crystal polarization hologram (LCPH) optical element. The optical system may include at least one LCPH optical element that polarizes light and a narrow band angular filter or reflector. The LCPH may receive one or more rays of light associated with the light from a light source and may diffract the rays of light. The rays of light may be directed to a narrow band angular filter or reflector to filter or reflect satellite diffraction orders and allow target diffraction orders to be transmitted on a final sample or target component (e.g., display of a HMD, or any augmented reality device)

    VAN LCOS microdisplays: a decade of technological evolution

    Get PDF
    Abstract—Microdisplays of the liquid crystals on silicon (LCOS) type have gone through a rapid evolution during the last decade. We present an overview of how vertically aligned nematic (VAN) LCOS have evolved from an attractive, but notoriously difficult and even infamous technology, to the mainstream microdisplay technology that it is today. At the same time, we highlight a number of remaining issues and concerns, and present some ideas of how to remedy them

    Liquid-crystal photonic applications

    Get PDF

    Index to nasa tech briefs, issue number 2

    Get PDF
    Annotated bibliography on technological innovations in NASA space program

    A versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays

    Full text link
    We present a maskless microscope projection lithography system (MPLS), in which photomasks have been replaced by a Digital Micromirror Device type spatial light modulator (DMD, Texas Instruments). Employing video projector technology high resolution patterns, designed as bitmap images on the computer, are displayed using a micromirror array consisting of about 786000 tiny individually addressable tilting mirrors. The DMD, which is located in the image plane of an infinity corrected microscope, is projected onto a substrate placed in the focal plane of the microscope objective. With a 5x(0.25 NA) Fluar microscope objective, a fivefold reduction of the image to a total size of 9 mm2 and a minimum feature size of 3.5 microns is achieved. Our system can be used in the visible range as well as in the near UV (with a light intensity of up to 76 mW/cm2 around the 365 nm Hg-line). We developed an inexpensive and simple method to enable exact focusing and controlling of the image quality of the projected patterns. Our MPLS has originally been designed for the light-directed in situ synthesis of DNA microarrays. One requirement is a high UV intensity to keep the fabrication process reasonably short. Another demand is a sufficient contrast ratio over small distances (of about 5 microns). This is necessary to achieve a high density of features (i.e. separated sites on the substrate at which different DNA sequences are synthesized in parallel fashion) while at the same time the number of stray light induced DNA sequence errors is kept reasonably small. We demonstrate the performance of the apparatus in light-directed DNA chip synthesis and discuss its advantages and limitations.Comment: 12 pages, 9 figures, journal articl

    Design and Fabrication of Ultra-Short Throw Ratio Projector Based on Liquid Crystal on Silicon

    Get PDF
    One of applications for liquid crystal on silicon (LCoS) could be an emitted light panel for display and projection. Among optical projectors, the most challenging work is to design ultra-short throw projection systems for LCoS projector for home cinema, virtual reality (VR), head-up display (HUD) in automobile. The chapter discloses the design and fabrication of such kind of projector. In fact, such design is not only to design wide angle projection optics but also to optimize illumination for LCoS in order to have high-quality image. The projector optical system is simply with a telecentric field lens and inlet optics of symmetric double gauss or a large angle eyepiece, with a conic aspheric mirror, thus the full projection angle large than 155°. Applying Koehler illumination, the resolution of image is increased; thus, the modulation transfer function of image in high spatial frequency is increased to form the high-quality illuminated image. Based on telecentric lens type of projection systems and Koehler illumination, optical parameters are provided. The partial coherence analysis has verified that the design is reached to 2.5 lps/mm within 2 × 1.5 m. The best performance of systems has been achieved. The throw ratio is less than 0.25 with HD format
    • …
    corecore