1,482 research outputs found

    Image appearance modeling

    Get PDF
    Traditional color appearance modeling has recently matured to the point that available, internationally-recommended models such as CIECAM02 are capable of making a wide range of predictions to within the observer variability in color matching and color scaling of stimuli in somewhat simplified viewing conditions. It is proposed that the next significant advances in the field of color appearance modeling will not come from evolutionary revisions of these models. Instead, a more revolutionary approach will be required to make appearance predictions for more complex stimuli in a wider array of viewing conditions. Such an approach can be considered image appearance modeling since it extends the concepts of color appearance modeling to stimuli and viewing environments that are spatially and temporally at the level of complexity of real natural and man-made scenes. This paper reviews the concepts of image appearance modeling, presents iCAM as one example of such a model, and provides a number of examples of the use of iCAM in still and moving image reproduction

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    DeepHS-HDRVideo: Deep High Speed High Dynamic Range Video Reconstruction

    Full text link
    Due to hardware constraints, standard off-the-shelf digital cameras suffers from low dynamic range (LDR) and low frame per second (FPS) outputs. Previous works in high dynamic range (HDR) video reconstruction uses sequence of alternating exposure LDR frames as input, and align the neighbouring frames using optical flow based networks. However, these methods often result in motion artifacts in challenging situations. This is because, the alternate exposure frames have to be exposure matched in order to apply alignment using optical flow. Hence, over-saturation and noise in the LDR frames results in inaccurate alignment. To this end, we propose to align the input LDR frames using a pre-trained video frame interpolation network. This results in better alignment of LDR frames, since we circumvent the error-prone exposure matching step, and directly generate intermediate missing frames from the same exposure inputs. Furthermore, it allows us to generate high FPS HDR videos by recursively interpolating the intermediate frames. Through this work, we propose to use video frame interpolation for HDR video reconstruction, and present the first method to generate high FPS HDR videos. Experimental results demonstrate the efficacy of the proposed framework against optical flow based alignment methods, with an absolute improvement of 2.4 PSNR value on standard HDR video datasets [1], [2] and further benchmark our method for high FPS HDR video generation.Comment: ICPR 202

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF

    Image-based Material Editing

    Get PDF
    Photo editing software allows digital images to be blurred, warped or re-colored at the touch of a button. However, it is not currently possible to change the material appearance of an object except by painstakingly painting over the appropriate pixels. Here we present a set of methods for automatically replacing one material with another, completely different material, starting with only a single high dynamic range image, and an alpha matte specifying the object. Our approach exploits the fact that human vision is surprisingly tolerant of certain (sometimes enormous) physical inaccuracies. Thus, it may be possible to produce a visually compelling illusion of material transformations, without fully reconstructing the lighting or geometry. We employ a range of algorithms depending on the target material. First, an approximate depth map is derived from the image intensities using bilateral filters. The resulting surface normals are then used to map data onto the surface of the object to specify its material appearance. To create transparent or translucent materials, the mapped data are derived from the object\u27s background. To create textured materials, the mapped data are a texture map. The surface normals can also be used to apply arbitrary bidirectional reflectance distribution functions to the surface, allowing us to simulate a wide range of materials. To facilitate the process of material editing, we generate the HDR image with a novel algorithm, that is robust against noise in individual exposures. This ensures that any noise, which would possibly have affected the shape recovery of the objects adversely, will be removed. We also present an algorithm to automatically generate alpha mattes. This algorithm requires as input two images--one where the object is in focus, and one where the background is in focus--and then automatically produces an approximate matte, indicating which pixels belong to the object. The result is then improved by a second algorithm to generate an accurate alpha matte, which can be given as input to our material editing techniques

    Adaptive beam control and analysis in fluorescence microscopy

    Get PDF
    This thesis details three novel advances in instrumentation that are each related to performance improvement in wide-field visible-spectrum imaging systems. In each case our solution concerns the assessment and improvement of optical imaging quality. The three instruments are as follows: The first is a portable transmission microscope which is able to correct for artificially induced aberrations using adaptive optics (AO). The specimens and the method of introducing aberrations into the optical system can be altered to simulate the performance of AO-correction in both astronomical and biological imaging. We present the design and construction of the system alongside before-and-after AO-correction images for simulated astronomical and biological images. The second instrument is a miniature endoscope camera sensor we re-purposed for use as a quantitative beam analysis probe using a custom high dynamic range (HDR) imaging and reconstruction procedure. This allowed us to produce quantitative flux maps of the illumination beam intensity profile within several operational fluorescence microscope systems. The third and final project in this thesis was concerned with an adaptive modification to the light sheet illumination beam used in light sheet microscopy, specifically for a single plane illumination microscope (SPIM), embracing the trade-off between the thickness of the light sheet and its extent across the detection field-of-view. The focal region of the beam was made as small as possible and then matched to the shape of curved features within a biological specimen by using a spatial light modulator (SLM) to alter the light sheet focal length throughout the vertical span of the sheet. We used the HDR beam profiling camera probe mentioned earlier to assess the focal shape and quality of the beam. The resulting illumination beam may in the future be used in a modified SPIM system to produce fluorescence microscope images with enhanced optical sectioning of specific curved features
    corecore