591 research outputs found

    High Dynamic Performance Programmed PWM Control of a Multilevel Inverter with Capacitor DC Sources

    Get PDF
    A cascade multilevel inverter consisting of a standard 3-leg inverter supplied by a DC source and three full H-bridges each supplied by a capacitor is considered for use as a motor drive. The capacitor H-bridges can only supply reactive voltage to the motor while the standard three leg inverter can supply both reactive and active voltage. A switching control algorithm is presented that shows this inverter topology can be used as an AC drive achieving considerable performance advantages (e.g., higher motor speed) compared to using a standard 3-leg inverter while at the same time regulating the capacitor voltages. The converter controller is a fundamental frequency switching controller based on programmed PWM to achieve higher efficiency (less power losses in the switches) compared to high-frequency PWM approaches. As is well known, the programmed PWM switching times are computed assuming the drive is in sinusoidal steady-state, that is, the derived switching angles achieve the fundamental while rejecting specified harmonics if the voltage waveforms are in sinusoidal steady-state. Here it shown that the switching commands to the converter can be implemented in a smooth fashion for voltage waveform commands whose frequency and amplitudes are continuously varying

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Integration of energy storage components with cascaded H-bridge multilevel converters

    Get PDF
    In recent years, multilevel converters have gained considerable attention in medium-voltage motor drive and grid applications. This popularity is owed to their reduced voltage stress on the semiconductor devices used in their structure. In addition, multilevel converters generate near sinusoidal outputs with low harmonic distortions. Other advantages of such converters include inherent modularity and low dv/dt stresses. In general, multilevel power electronic converters are classified into three main topologies: diode-clamped, flying-capacitor, and cascaded H-bridge. A cascaded H-bridge multilevel converter is created when several H-bridge cells are placed in series. Each H-bridge cell must be fed by a stiff voltage source. In earlier implementations, every one of these voltage sources had to contribute to the overall power supplied to the load. Later, it was demonstrated that under certain operating conditions, one can replace all but one of these sources with energy storage devices, e.g., capacitors. In other words, the entire power can be supplied by only one source. The replacing capacitors must only maintain a constant dc voltage supplying zero net power. Although this approach benefits from cost reductions, balancing the voltages across the replacing capacitors turns out to be a challenge. In this thesis, the operating conditions under which the capacitor voltage regulation is feasible are first analytically investigated. The results show that the amplitude of the output voltage as well as the power factor of the load current determines the regulation range when the staircase modulation method is employed. In order to extend the regulation range for the replacing capacitors, a new control scheme - phase shift modulation - is proposed. This method is more robust when compared to existing methods. In this method, the main H-bridge cell of the multilevel converter operates at the fundamental frequency and the auxiliary cells run at the PWM frequency. Finally, the sigma-delta modulation method has been utilized to extend the capacitor voltage regulation range. This method benefits from simplicity in implementation in comparison to PWM techniques. The analytical and simulation results prove the effectiveness of the proposed approaches. They are also consistent with the results of the experiment --Abstract, page iv

    Multi-Frequency Modulation and Control for DC/AC and AC/DC Resonant Converters

    Get PDF
    Harmonic content is inherent in switched-mode power supplies. Since the undesired harmonics interfere with the operation of other sensitive electronics, the reduction of harmonic content is essential for power electronics design. Conventional approaches to attenuate the harmonic content include passive/active filter and wave-shaping in modulation. However, those approaches are not suitable for resonant converters due to bulky passive volumes and excessive switching losses. This dissertation focuses on eliminating the undesired harmonics from generation by intelligently manipulating the spectrum of switching waveforms, considering practical needs for functionality.To generate multiple ac outputs while eliminating the low-order harmonics from a single inverter, a multi-frequency programmed pulse width modulation is investigated. The proposed modulation schemes enable multi-frequency generation and independent output regulation. In this method, the fundamental and certain harmonics are independently controlled for each of the outputs, allowing individual power regulations. Also, undesired harmonics in between output frequencies are easily eliminated from generation, which prevents potential hazards caused by the harmonic content and bulky filters. Finally, the proposed modulation schemes are applicable to a variety of DC/AC topologies.Two applications of dc/ac resonant inverters, i.e. an electrosurgical generator and a dual-mode WPT transmitter, are demonstrated using the proposed MFPWM schemes. From the experimental results of two hardware prototypes, the MFPWM alleviates the challenges of designing a complicated passive filter for the low-order harmonics. In addition, the MFPWM facilitates combines functionalities using less hardware compared to the state-of-the-art. The prototypes demonstrate a comparable efficiency while achieving multiple ac outputs using a single inverter.To overcome the low-efficiency, low power-density problems in conventional wireless fast charging, a multi-level switched-capacitor ac/dc rectifier is investigated. This new WPT receiver takes advantage of a high power-density switched-capacitor circuit, the low harmonic content of the multilevel MFPWMs, and output regulation ability to improve the system efficiency. A detailed topology evaluation regarding the regulation scheme, system efficiency, current THD and volume estimation is demonstrated, and experimental results from a 20 W prototype prove that the multi-level switched-capacitor rectifier is an excellent candidate for high-efficiency, high power density design of wireless fast charging receiver

    Distributed Control of Hybrid Motor Drives

    Get PDF
    The hybrid inverter fed motor drive with two cascaded multilevel inverters is an attractive option for high performance high power applications such as naval ship propulsion systems due to a number of unique features. There is a natural split between a higher-voltage lower-frequency bulk inverter and a lower-voltage higher-frequency conditioning inverter in the cascaded system which matches the availability of semiconductor devices. Furthermore, the bulk inverter may be a commercial-off-the-shelf (COTS) motor drive meaning that only the conditioning inverter needs to be custom made. However, a drive involving a COTS bulk inverter would require a distributed conditioning inverter control which works completely independent of the bulk inverter control. In this paper, a set of distributed control methods are developed for the hybrid inverter drive with cascaded bulk and conditioning inverters, requiring only single dc source. Moreover, a solution to the practical problem of instant synchronization between the two inverters is presented. Laboratory measurements on a 3.7-kW induction motor drive validate the proposed control. Various practical considerations (such as low m-index performance and capacitor precharging options) are discussed and their solutions provided

    Design and Application of Hybrid Multilevel Inverter for Voltage Boost

    Get PDF
    Today many efforts are made to research and use new energy sources because the potential for an energy crisis is increasing. Multilevel converters have gained much attention in the area of energy distribution and control due to its advantages in high power applications with low harmonics. They not only achieve high power ratings, but also enable the use of renewable energy sources. The general function of the multilevel converter is to synthesize a desired high voltage from several levels of dc voltages that can be batteries, fuel cells, etc. This dissertation presents a new hybrid multilevel inverter for voltage boost. The inverter consists of a standard 3-leg inverter (one leg for each phase) and H-bridge in series with each inverter leg. It can use only a single DC power source to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors or batteries. The proposed inverter could be applied in hybrid electric vehicles (HEVs) and fuel cell based hybrid electric vehicles (FCVs). It is of voltage boosting capability and eliminates the magnetics. This feature makes it suitable for the motor running from low to high power mode. In addition to hybrid electric vehicle applications, this paper also presents an application where the hybrid multilevel inverter acts as a renewable energy utility interface. In this dissertation, the structure, operation principle, and modulation control schemes of the proposed hybrid multilevel inverter are introduced. Simulation models and results are described and analyzed. An experimental 5 kW prototype inverter is built and tested

    Extended Operation of Flying Capacitor Multilevel Inverters

    Get PDF
    Recent research in flying capacitor multilevel inverters (FCMIs) has shown that the number of voltage levels can be extended by changing the ratio of the capacitor voltages. For the three-cell FCMI, four levels of operation are expected if the traditional ratio of the capacitor voltages is 1:2:3. However, by altering the ratio, the inverter can operate as a five-, six-, seven-, or eight-level inverter. According to previous research, the eight-level case is referred to as maximally distended (or full binary combination schema) since it utilizes all possible transistor switching states. However, this case does not have enough per-phase redundancy to ensure capacitor voltage balancing under all modes of operation. In this paper, redundancy involving all phases is used along with per-phase redundancy to improve capacitor voltage balancing. It is shown that the four- and five-level cases are suitable for motor drive operation and can maintain capacitor voltage balance under a wide range of power factors and modulation indices. The six-, seven-, and eight-level cases are suitable for reactive power transfer in applications such as static var compensation. Simulation and laboratory measurements verify the proposed joint-phase redundancy control

    Direct control of D-STATCOM based on 23-level cascaded multilevel inverter using harmonics elimination pulse width modulation

    Get PDF
    The distribution static synchronous compensator (D-STATCOM) is primarily used for solving power quality problems. Normally, the phase-shifted pulse width modulation (PS-PWM) switching is employed in conjunction with the direct control of the D-STATCOM. However, the PS-PWM exhibits high switching losses. To alleviate this problem, a direct control scheme for D-STATCOM based on the harmonic elimination PWM (HEPWM) switching is developed. Due to the difficulty in solving the equations for the HEPWM angles, no work is reported on the direct control for a multilevel voltage source inverter (MVSI) D-STATCOM with more than 15-levels. Thus, the main contribution of the work is the application of HEPWM for 23-level cascaded MVSI using a wide modulation index (MI) range (i.e. 5.40 – 8.15 p.u). The main motivation to utilize the high number of level is to allow for the output voltage of the D-STATCOM to be sufficiently high, thus avoiding the use of step-up transformer. Furthermore, the achieved MI keeps the total harmonic distortion of the MVSI output voltage below the IEEE 519 Standard (5%) over the entire operating range. The eleven HEPWM switching angles were computed using an optimization technique, known as the differential evolution. Since the angles were computed offline, they were retrieved from a look-up table whenever the output voltage of the MVSI was to be constructed. The HEPWM-based direct control was benchmarked against the popular PS-PWM using ± 6.5MVAr/11kV D-STATCOM modelled in MATLAB-Simulink and PLECS software. For the same switching frequency, the proposed HEPWM switching exhibited superior harmonic spectra, hence had lower losses. Furthermore, the size of the series coupling inductor can be reduced to at least half. Dynamically, the steady state value of the reactive current was reached in less than one mains cycle when a transition from the full inductive to full capacitive modes was imposed. In addition, the proposed D-STATCOM controller mitigated the swell and sag problems in less than one cycle

    Extended Operation of Flying Capacitor Multilevel Inverters

    Get PDF
    Recent research in flying capacitor multilevel inverters (FCMIs) has shown that the number of voltage levels can be extended by changing the ratio of the capacitor voltages. For the three-cell FCMI, four levels of operation are expected if the traditional ratio of the capacitor voltages is 1:2:3. However, by altering the ratio, the inverter can operate as a five-, six-, seven-, or eight-level inverter. According to previous research, the eight-level case is referred to as maximally distended (or full binary combination schema) since it utilizes all possible transistor switching states. However, this case does not have enough per-phase redundancy to ensure capacitor voltage balancing under all modes of operation. In this paper, redundancy involving all phases is used along with per-phase redundancy to improve capacitor voltage balancing. It is shown that the four- and five-level cases are suitable for motor drive operation and can maintain capacitor voltage balance under a wide range of power factors and modulation indices. The six-, seven-, and eight-level cases are suitable for reactive power compensation in applications such as static var compensation. Simulation and laboratory measurements results verify the proposed joint-phase redundancy control
    corecore