12,965 research outputs found

    High Throughput Push Based Storage Manager

    Full text link
    The storage manager, as a key component of the database system, is responsible for organizing, reading, and delivering data to the execution engine for processing. According to the data serving mechanism, existing storage managers are either pull-based, incurring high latency, or push-based, leading to a high number of I/O requests when the CPU is busy. To improve these shortcomings, this thesis proposes a push-based prefetching strategy in a column-wise storage manager. The proposed strategy implements an efficient cache layer to store shared data among queries to reduce the number of I/O requests. The capacity of the cache is maintained by a time access-aware eviction mechanism. Our strategy enables the storage manager to coordinate multiple queries by merging their requests and dynamically generate an optimal read order that maximizes the overall I/O throughput. We evaluated our storage manager both over a disk-based redundant array of independent disks (RAID) and an NVM Express (NVMe) solid-state drive (SSD). With the high read performance of the SSD, we successfully minimized the total read time and number of I/O accesses

    HERA-B Framework for Online Calibration and Alignment

    Full text link
    This paper describes the architecture and implementation of the HERA-B framework for online calibration and alignment. At HERA-B the performance of all trigger levels, including the online reconstruction, strongly depends on using the appropriate calibration and alignment constants, which might change during data taking. A system to monitor, recompute and distribute those constants to online processes has been integrated in the data acquisition and trigger systems.Comment: Submitted to NIM A. 4 figures, 15 page

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    From Cooperative Scans to Predictive Buffer Management

    Get PDF
    In analytical applications, database systems often need to sustain workloads with multiple concurrent scans hitting the same table. The Cooperative Scans (CScans) framework, which introduces an Active Buffer Manager (ABM) component into the database architecture, has been the most effective and elaborate response to this problem, and was initially developed in the X100 research prototype. We now report on the the experiences of integrating Cooperative Scans into its industrial-strength successor, the Vectorwise database product. During this implementation we invented a simpler optimization of concurrent scan buffer management, called Predictive Buffer Management (PBM). PBM is based on the observation that in a workload with long-running scans, the buffer manager has quite a bit of information on the workload in the immediate future, such that an approximation of the ideal OPT algorithm becomes feasible. In the evaluation on both synthetic benchmarks as well as a TPC-H throughput run we compare the benefits of naive buffer management (LRU) versus CScans, PBM and OPT; showing that PBM achieves benefits close to Cooperative Scans, while incurring much lower architectural impact.Comment: VLDB201

    Event Stream Processing with Multiple Threads

    Full text link
    Current runtime verification tools seldom make use of multi-threading to speed up the evaluation of a property on a large event trace. In this paper, we present an extension to the BeepBeep 3 event stream engine that allows the use of multiple threads during the evaluation of a query. Various parallelization strategies are presented and described on simple examples. The implementation of these strategies is then evaluated empirically on a sample of problems. Compared to the previous, single-threaded version of the BeepBeep engine, the allocation of just a few threads to specific portions of a query provides dramatic improvement in terms of running time

    Supporting simulation in industry through the application of grid computing

    Get PDF
    An increased need for collaborative research, together with continuing advances in communication technology and computer hardware, has facilitated the development of distributed systems that can provide users access to geographically dispersed computing resources that are administered in multiple computer domains. The term grid computing, or grids, is popularly used to refer to such distributed systems. Simulation is characterized by the need to run multiple sets of computationally intensive experiments. Large scale scientific simulations have traditionally been the primary benefactor of grid computing. The application of this technology to simulation in industry has, however, been negligible. This research investigates how grid technology can be effectively exploited by users to model simulations in industry. It introduces our desktop grid, WinGrid, and presents a case study conducted at a leading European investment bank. Results indicate that grid computing does indeed hold promise for simulation in industry
    • …
    corecore