137 research outputs found

    High spectral efficiency superchannel transmission using a soliton microcomb

    Get PDF
    Optical communication systems have come through five orders of magnitude improvement in data rate over the last three decades. The increased demand in data traffic and the limited optoelectronic component bandwidths have led to state-of-the-art systems employing hundreds of separate lasers in each transmitter. Given the limited optical amplifier bandwidths, focus is now shifting to maximize the spectral efficiency, SE. However, the frequency jitter from neighbouring lasers results in uncertainties of the exact channel wavelength, requiring large guardbands to avoid catastrophic channel overlap. Optical frequency combs with optimal line spacings (typically around 10-50 GHz) can overcome these limitations and maximize the SE. Recent developments in microresonator-based soliton frequency combs (hereafter microcombs) promise a compact, power efficient multi-wavelength and phase-locked light source for optical communications. Here we demonstrate a microcomb-based communication link achieving state-of-the-art spectral efficiency that has previously only been possible with bulk-optics systems. Compared to previous microcomb works in optical communications, our microcomb features a narrow line spacing of 22.1 GHz. In addition, it provides a four order-of-magnitude more stable line spacing compared to free-running lasers. The optical signal-to-noise ratio (OSNR) is sufficient for information encoding using state-of-the-art high-order modulation formats. This enables us to demonstrate transmission of a 12 Tb/s superchannel over distances ranging from a single 82 km span with an SE exceeding 10 bits/s/Hz, to 2000 km with an SE higher than 6 bits/s/Hz. These results demonstrate that microcombs can attain the SE that will spearhead future optical networks

    High spectral efficiency coherent superchannel transmission with soliton microcombs

    Get PDF
    Spectral efficiency (SE) is one of the key metrics for optical communication networks. An important building block for its maximization are optical superchannels, channels that are composed of several subchannels with an aggregate bandwidth larger than the bandwidth of the detector electronics. Superchannels which are routed through the network as a single entity, together with flex-grid routing, allow to more efficiently utilize available bandwidth and eliminate the guard-bands between channels, thus increasing spectral efficiency. In contrast to traditional wavelength division multiplexing (WDM) channels, subchannel spacing and thus superchannel SE is governed by the linewidth and stability of the frequency spacing of the transmitter lasers. Integrated optical frequency combs, particulary the parametrically generated so-called microcombs, which provide optical lines on a fixed frequency grid are a promising solution for low power superchannel laser sources that allow to minimize the SE loss from suboptimal channel spacing. However, it is extremely challenging to realize micro-combs with sufficient line power, coherence and line spacing that is compatible with electronic bandwidths. Because the line-spacing generated by most devices is above 40 GHz, demonstrations often rely on additional electro-optic frequency shifter or divider stages to avoid digital-to-analog-converter (DAC) performance degradation when operating at high symbol rates. Here we demonstrate a 50-line superchannel from a single 22 GHz line spacing soliton microcomb. We demonstrate 12 Tb/s throughput with > 10 bits/s/Hz SE efficiency after 80 km transmission and 8 Tb/s throughput (SE > 6 bits/s/Hz) after 2100 km, proving the feasibility and benefits of generating high signal quality, broadband waveforms directly from the output of a micro-scale device with a symbol rate close to the comb repetition rate

    Integrated optical frequency comb for 5G NR Xhauls

    Get PDF
    : We experimentally demonstrate the use of optical frequency combs (OFCs), generated by a photonic integrated circuit (PIC), in a flexible optical distribution network based on fiber-optics and free-space optics (FSOs) links, aimed at the fifth generation of mobile network (5G) Xhauls. The Indium Phosphide (InP) monolithically integrated OFC is based on cascaded optical modulators and is broadly tunable in terms of operating wavelength and frequency spacing. Particularly, our approach relies on applying the PIC in a centralized radio access network (C-RAN) architecture, with the purpose of optically generating two low-phase noise mm-waves signals for simultaneously enabling a 12.5-km of single-mode fiber (SMF) fronthaul and a 12.5-km SMF midhaul, followed by a 10-m long FSO fronthaul link. Moreover, the demonstrator contemplates two 10-m reach 5G wireless access networks operating in the 26 GHz band, i.e. over the frequency range 2 (FR2) from the 5G NR standard. The proposed integrated OFC-based 5G system performance is in accordance to the 3rd Generation Partnership Project (3GPP) Release 15 requirements, achieving a total wireless throughput of 900 Mbit/s

    Coherent terabit/s communications using chip-scale optical frequency comb sources

    Get PDF
    Der Visual Networking Index (VNI) der Firma Cisco weist für den weltweiten Internetverkehr eine durchschnittlichen jährlichen Wachstumsrate von 26% aus und prognostiziert 2022 einen jährliche Datenverkehr von 4,8 Zettabyte [1]. Um diesem Anstieg des Netzwerkverkehrs zu begegnen, ist die kohärente Datenübertragung in Kombination mit sogenanntem Wellenlängenmultiplex (engl. wavelength-division multiplexing, WDM) in Langstrecken-Glasfasernetzwerken zum Standard geworden. Mit der verstärkten Nutzung von Cloud-basierten Diensten, dem wachsenden Trend, Inhalte in die Nähe der Endbenutzer zu bringen, und der steigenden Anzahl angeschlossener Geräte in sog. Internet-of-Things-(IoT-)Szenarien, wird der Datenverkehr auf allen Netzebenen voraussichtlich weiter drastisch ansteigen. Daher wird erwartet, dass die WDM-Übertragung mittelfristig auch kürzere Verbindungen verwendet werden wird, die in viel größeren Stückzahlen eingesetzt werden als Langstreckenverbindungen und bei denen die Größe und die Kosten der Transceiver-Baugruppen daher wesentlich wichtiger sind. In diesem Zusammenhang werden optische Frequenzkammgeneratoren als kompakte und robuste Mehrwellenlängen-Lichtquellen eine wichtige Rolle spielen. Sie können sowohl auf der Sender- als auch auf der Empfängerseite einer kohärenten WDM-Verbindung eine große Anzahl wohldefinierter optischer Träger oder Lokaloszillator-Signale liefern. Ein besonders wichtiger Vorteil der Frequenzkämme ist die Tatsache, dass die Spektrallinien von Natur aus äquidistant sind und durch nur zwei Parameter − die Mittenfrequenz und den freien Spektralbereich − definiert werden. Dadurch kann eine auf eine individuelle Frequenzüberwachung der einzelnen Träger verzichtet werden, und etwaige spektrale Schutzbänder zwischen benachbarten Kanälen können stark reduziert werden oder komplett wegfallen. Darüber hinaus erleichtert die inhärente Phasenbeziehung zwischen den Trägern eines Frequenzkamms die gemeinsame digitale Signalverarbeitung der WDM-Kanäle, was die Empfängerkomplexität reduzieren und darüber hinaus auch die Kompensation nichtlinearer Kanalstörungen ermöglichen kann. Unter den verschiedenen Kammgeneratoren sind Bauteile im Chip-Format der Schlüssel für künftige WDM-Transceiver, die eine kompakte Bauform aufweisen und sich kosteneffizient in großen Stückzahlen herstellen lassen sollen. Gegenstand dieser Arbeit ist daher die Untersuchung von neuartigen Frequenzkammgeneratoren im Chip-Format im Hinblick auf deren Eignung für die massiv parallele WDM-Übertragung. Diese Bauteile lassen sich nicht nur als Mehrwellenlängen-Lichtquellen auf der Senderseite einsetzen, sondern bieten sich auch als Mehrwellenlängen-Lokaloszillatoren (LO) für den parallelen kohärenten Empfang mehrerer WDM-Kanäle an. Bei den untersuchten Bauteilen handelt es sich um gütegeschaltete Laserdioden (engl. Gain-Switched Laser Diodes), modengekoppelte Laserdioden auf Basis von Quantenstrich-Strukturen (Quantum-Dash Mode-Locked Laser Diodes, QD-MLLD) und sog. Kerr-Kamm-Generatoren, die optische Nichtlinearitäten dritter Ordnung in Ringresonatoren hoher Güte ausnutzen. Der Schwerpunkt liegt dabei auf Datenübertragungsexperimenten, die die Eignung der verschiedenen Kammquellen untersuchen und die in den internationalen Fachzeitschriften Nature und Optics Express veröffentlicht wurden [J1]-[J4]. Kapitel 1 gibt eine allgemeine Einführung in das Thema der optischen Datenübertragung und der zugehörigen WDM-Verfahren. In diesem Zusammenhang werden die Vorteile optischer Frequenzkämme als Lichtquellen für die WDM-Datenübertragung und den WDM-Empfang erläutert. Die einige Inhalte dieses Kapitels sind dem Buchkapitel [B1] entnommen, wobei Änderungen zur Anpassung an die Struktur und Notation der vorliegenden Arbeit vorgenommen wurden. In Kapitel 2 wird eine grundlegende Einführung in optische Kommunikations-systeme mit Schwerpunkt auf Hochleistungsverbindungen gegeben, die auf WDM und kohärenten Übertragungsverfahren beruhen. Außerdem wird die integrierte Optik als wichtiges technologisches Element zum Bau kostengünstiger und kompakter WDM-Transceiver vorgestellt. Das Kapitel gibt ferner einen Überblick über verschiedene optische Frequenzkammgeneratoren im Chip-Format, die sich als Mehrwellenlängen-Lichtquellen für solche Transceiver anbieten, und es werden grundlegende Anforderungen an optische Frequenzkammgeneratoren formuliert, die für WDM-Anwendungen relevant sind. Das Kapitel endet mit einer vergleichenden Diskussion der verschiedenen Kammgeneratoren sowie einer Zusammenfassung ausgewählter WDM-Datenübertragungsexperimente, die mit diesen Kammgeneratoren demonstriert wurden. In Kapitel 3 wird die kohärente WDM-Sendetechnik und der kohärente WDM-Empfang mit einer gütegeschalteten Laserdiode (GSLD) diskutiert. Im Mittelpunkt der Arbeit steht ein Versuchsaufbau, in dem der empfängerseitige Kammgenerator aktiv mit dem senderseitigen Generator synchronisiert wurde. Das Experiment stellt die weltweit erste Demonstration einer kohärenten WDM-Übertragung mit Datenraten von über 1 Tbit/s dar, bei dem synchronisierte Frequenzkämme als Mehrwellenlängen-Lichtquelle am Sender und als Mehrwellenlängen-LO am Empfänger verwendet werden. Kapitel 4 untersucht das Potenzial von QD-MLLD als Mehrwellenlängen-Lichtquellen für die WDM-Datenübertragung. Diese Kammgeneratoren sind aufgrund ihrer kompakten Größe und des einfachen Betriebs besonders attraktiv. Die erzeugten Kammlinien weisen jedoch ein hohes Phasenrauschen auf, das die Modulationsformate in früheren Übertragungsexperimenten auf 16QAM begrenzte. In diesem Kapitel wird gezeigt, dass QD-MLLD die WDM-Übertragung mit Modulationsformaten jenseits von 16QAM unterstützen kann, wenn eine optische Rückkopplung durch einen externen Resonator zur Reduzierung des Phasenrauschens der Kammlinien verwendet wird. In den Experimenten wird eine Reduzierung der intrinsischen Linienbreite um etwa zwei Größenordnungen demonstriert, was eine 32QAM-WDM-Übertragung ermöglicht. Die Demonstration der Datenübertragung mit einer Rate von 12 Tbit/s über eine 75 km lange Faser mit einer spektralen Netto-Effizienz von 7,5 Bit/s/Hz stellt dabei die höchste für diese Bauteile gezeigte spektrale Effizienz dar. Gegenstand von Kapitel 5 ist die WDM-Übertragung und der kohärente Empfang mit QD-MLLD vor. Die Vorteile der Skalierbarkeit von QD-MLLD für massiv parallele WDM-Verbindungen werden also nicht nur am Sender, wie in Kapitel 4 beschrieben, sondern auch am Empfänger ausgenutzt. So konnte ein Datenstrom mit einer Rohdatenrate von 4,1 Tbit/s über eine Distanz von 75 km übertragen werden, indem ein Paar von QD-MLLD mit ähnlichen freien Spektralbereichen verwendet wurde – ein Bauteil zur Erzeugung der optischen Träger am WDM-Sender und ein weiteres Bauteil zur Bereitstellung der erforderlichen LO-Töne für den kohärenten WDM-Empfang. Kapitel 6 beschreibt WDM-Datenübertragungsexperimente mit Hilfe von Kerr-Kamm-Generatoren. Dazu werden sog. dissipative Kerr-Solitonen (engl. dissipative Kerr solitons, DKS) in integriert-optischen Mikroresonatoren genutzt, die wegen zur Erzeugung einer streng periodischen Folge ultra-kurzer optischer Impulsen im Zeitbereich und damit zu einem breitbandigen, für WDM-Systeme sehr gut geeigneten Frequenzkamm führen. Mit diesen DKS-Kämmen wird ein Datenstrom mit einer Rohdatenrate von 55,0 Tbit/s über eine 75 km lange Faser übertragen. Zum Zeitpunkt der Veröffentlichung war dies die höchste Datenrate, welche mit einer chip-basierten Frequenzkammquelle erreicht wurde. Das Ergebnis zeigt das Potenzial der Kammquellen für WDM-Übertragung. Darüber hinaus wird der kohärente Empfang von 93 WDM-Kanälen mit einer Datenrate von 37,2 Tbit/s unter Verwendung eines DKS-Kamms als Multiwellenlängen-LO demonstriert; die Übertragung erfolgt über eine 75 km lange Faser. Diese Arbeiten wurde in der international renommierten wissenschaftlichen Zeitschrift Nature publiziert. Kapitel 7 fasst die Arbeit zusammen und gibt einen Ausblick auf die Anwendung der diskutierten Kammgeneratoren in zukünftigen WDM-Systemen

    Wafer-level processing of ultralow-loss Si3N4

    Get PDF
    Photonic integrated circuits (PICs) are devices fabricated on a planar wafer that allow light generation, processing, and detection. Photonic integration brings important advantages for scaling up the complexity and functionality of photonic systems and facilitates their mass deployment in areas where large volumes and compact solutions are needed, e.g., optical interconnects. Among the material platforms available, silicon nitride (Si3N4) displays excellent optical properties such as broadband transparency, moderately high refractive index, and relatively strong nonlinearities. Indeed, Si3N4 integrated waveguides display ultralow-loss (few decibels per meter), which enables efficient light processing and nonlinear optics. Moreover, Si3N4 is compatible with standard complementary metal oxide semiconductor (CMOS) processing techniques,which facilitates the manufacture scalability required by mass deployment of PICs. However, the selection of a single photonic platform sets limitations to the device functionalities due to the intrinsic properties of the material and the fundamental limitation of optical waveguiding. Multilayer integration of different platforms can overcome the limitations encountered in a singleplatform PIC.This thesis presents the development of advanced techniques for the waferlevel manufacturing of ultralow-loss Si3N4 devices and approaches to enable their interface with active components like modulators and chip-scale comb sources (microcombs). The investigation covers the tailoring of a waveguide to the functionality required, the wafer-scale manufacturing of Si3N4, and how to overcome the limitations of a single platform on a wafer. These studies enable high-yield fabrication of microcombs, the integration of two Si3N4 platforms on the same wafer, and a strategy to efficiently couple to an integrated LiNbO3 layer to expand the chip functionality and scale up the complexity of the PIC

    Flattening laser frequency comb spectra with a high dynamic range, broadband spectral shaper on-a-chip

    Full text link
    Spectral shaping is critical to many fields of science. In astronomy for example, the detection of exoplanets via the Doppler effect hinges on the ability to calibrate a high resolution spectrograph. Laser frequency combs can be used for this, but the wildly varying intensity across the spectrum can make it impossible to optimally utilize the entire comb, leading to a reduced overall precision of calibration. To circumvent this, astronomical applications of laser frequency combs rely on a bulk optic setup which can flatten the output spectrum before sending it to the spectrograph. Such flatteners require complex and expensive optical elements like spatial light modulators and have non-negligible bench top footprints. Here we present an alternative in the form of an all-photonic spectral shaper that can be used to flatten the spectrum of a laser frequency comb. The device consists of a circuit etched into a silicon nitride wafer that supports an arrayed-waveguide grating to disperse the light over hundreds of nanometers in wavelength, followed by Mach-Zehnder interferometers to control the amplitude of each channel, thermo-optic phase modulators to phase the channels and a second arrayed-waveguide grating to recombine the spectrum. The demonstrator device operates from 1400 to 1800 nm (covering the astronomical H band), with twenty 20 nm wide channels. The device allows for nearly 40 dBs of dynamic modulation of the spectrum via the Mach-Zehnders , which is greater than that offered by most spatial light modulators. With a superluminescent diode, we reduced the static spectral variation to ~3 dB, limited by the properties of the components used in the circuit and on a laser frequency comb we managed to reduce the modulation to 5 dBs, sufficient for astronomical applications.Comment: 15 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:2209.0945

    An all-photonic, dynamic device for flattening the spectrum of a laser frequency comb for precise calibration of radial velocity measurements

    Full text link
    Laser frequency combs are fast becoming critical to reaching the highest radial velocity precisions. One shortcoming is the highly variable brightness of the comb lines across the spectrum (up to 4-5 orders of magnitude). This can result in some lines saturating while others are at low signal and lost in the noise. Losing lines to either of these effects reduces the precision and hence effectiveness of the comb. In addition, the brightness of the comb lines can vary with time which could drive comb lines with initially reasonable SNR's into the two regimes described above. To mitigate these two effects, laser frequency combs use optical flattener's. Flattener's are typically bulk optic setups that disperse the comb light with a grating, and then use a spatial light modulator to control the amplitude across the spectrum before recombining the light into another single mode fiber and sending it to the spectrograph. These setups can be large (small bench top), expensive (several hundred thousand dollars) and have limited stability. To address these issues, we have developed an all-photonic spectrum flattener on a chip. The device is constructed from optical waveguides on a SiN chip. The light from the laser frequency comb's output optical fiber can be directly connected to the chip, where the light is first dispersed using an arrayed waveguide grating. To control the brightness of each channel, the light is passed through a Mach-Zehnder interferometer before being recombined with a second arrayed waveguide grating. Thermo-optic phase modulators are used in each channel before recombination to path length match the channels as needed. Here we present the results from our first generation prototype. The device operates from 1400-1800 nm (covering the H band), with 20, 20 nm wide channels.Comment: 7 pages, 5 figures, conferenc

    High spectral efficiency superchannel transmission using a soliton microcomb

    Get PDF
    Optical communication systems have come through five orders of magnitude improvement in data rate over the last three decades. The increased demand in data traffic and the limited optoelectronic component bandwidths have led to state-of-the-art systems employing hundreds of separate lasers in each transmitter. Given the limited optical amplifier bandwidths, focus is now shifting to maximize the spectral efficiency, SE. However, the frequency jitter from neighbouring lasers results in uncertainties of the exact channel wavelength, requiring large guardbands to avoid catastrophic channel overlap. Optical frequency combs with optimal line spacings (typically around 10-50 GHz) can overcome these limitations and maximize the SE. Recent developments in microresonator-based soliton frequency combs (hereafter microcombs) promise a compact, power efficient multi-wavelength and phase-locked light source for optical communications. Here we demonstrate a microcomb-based communication link achieving state-of-the-art spectral efficiency that has previously only been possible with bulk-optics systems. Compared to previous microcomb works in optical communications, our microcomb features a narrow line spacing of 22.1 GHz. In addition, it provides a four order-of-magnitude more stable line spacing compared to free-running lasers. The optical signal-to-noise ratio (OSNR) is sufficient for information encoding using state-of-the-art high-order modulation formats. This enables us to demonstrate transmission of a 12 Tb/s superchannel over distances ranging from a single 82 km span with an SE exceeding 10 bits/s/Hz, to 2000 km with an SE higher than 6 bits/s/Hz. These results demonstrate that microcombs can attain the SE that will spearhead future optical networks
    corecore