560 research outputs found

    4Sensing - decentralized processing for participatory sensing data

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática.Participatory sensing is a new application paradigm, stemming from both technical and social drives, which is currently gaining momentum as a research domain. It leverages the growing adoption of mobile phones equipped with sensors, such as camera, GPS and accelerometer, enabling users to collect and aggregate data, covering a wide area without incurring in the costs associated with a large-scale sensor network. Related research in participatory sensing usually proposes an architecture based on a centralized back-end. Centralized solutions raise a set of issues. On one side, there is the implications of having a centralized repository hosting privacy sensitive information. On the other side, this centralized model has financial costs that can discourage grassroots initiatives. This dissertation focuses on the data management aspects of a decentralized infrastructure for the support of participatory sensing applications, leveraging the body of work on participatory sensing and related areas, such as wireless and internet-wide sensor networks, peer-to-peer data management and stream processing. It proposes a framework covering a common set of data management requirements - from data acquisition, to processing, storage and querying - with the goal of lowering the barrier for the development and deployment of applications. Alternative architectural approaches - RTree, QTree and NTree - are proposed and evaluated experimentally in the context of a case-study application - SpeedSense - supporting the monitoring and prediction of traffic conditions, through the collection of speed and location samples in an urban setting, using GPS equipped mobile phones

    A policy language definition for provenance in pervasive computing

    Get PDF
    Recent advances in computing technology have led to the paradigm of pervasive computing, which provides a means of simplifying daily life by integrating information processing into the everyday physical world. Pervasive computing draws its power from knowing the surroundings and creates an environment which combines computing and communication capabilities. Sensors that provide high-resolution spatial and instant measurement are most commonly used for forecasting, monitoring and real-time environmental modelling. Sensor data generated by a sensor network depends on several influences, such as the configuration and location of the sensors or the processing performed on the raw measurements. Storing sufficient metadata that gives meaning to the recorded observation is important in order to draw accurate conclusions or to enhance the reliability of the result dataset that uses this automatically collected data. This kind of metadata is called provenance data, as the origin of the data and the process by which it arrived from its origin are recorded. Provenance is still an exploratory field in pervasive computing and many open research questions are yet to emerge. The context information and the different characteristics of the pervasive environment call for different approaches to a provenance support system. This work implements a policy language definition that specifies the collecting model for provenance management systems and addresses the challenges that arise with stream data and sensor environments. The structure graph of the proposed model is mapped to the Open Provenance Model in order to facilitating the sharing of provenance data and interoperability with other systems. As provenance security has been recognized as one of the most important components in any provenance system, an access control language has been developed that is tailored to support the special requirements of provenance: fine-grained polices, privacy policies and preferences. Experimental evaluation findings show a reasonable overhead for provenance collecting and a reasonable time for provenance query performance, while a numerical analysis was used to evaluate the storage overhead

    Application of a Regional Multi-Modal Transportation System Performance Monitoring Framework

    Get PDF
    DTRT13-G-UTC57Comprehensive archives of regional real-time transportation system data, drawn from public agency fixed and moving detectors and integrated across travel modes, can provide unprecedented opportunities for precise and reliable system performance analysis at relatively low costs. Our access to the state-of-the-art Archived Data Management System (ADMS), a large transportation data archive in Los Angeles, has made possible new research aimed at developing strategies to improve the efficiency and productivity of urban transportation systems. This project, an application of the ADMS, presents a flexible framework to examine the characteristics and explanatory factors associated with intra-metropolitan variation in highway system performance in Los Angeles County. Using one year of highway data and employing three different performance measures that capture network traffic congestion, flow and reliability, we analyze the effects of systematic, random and land use factors on performance variation. We find that performance differs across different types of highway segments, and that population density and accidents are significant factors in explaining these differences. Our study sheds new light on spatiotemporal variations in highway system performance within a large and congested metropolitan area. We underscore the need for investing in regional data archives, and applying them for research and analysis in order to improve planning and system management

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    The UARS and open data concept and analysis study

    Get PDF
    Alternative concepts for a common design for the UARS and OPEN Central Data Handling Facility (CDHF) are offered. Costs for alternative implementations of the UARS designs are presented, showing that the system design does not restrict the implementation to a single manufacturer. Processing demands on the alternative UARS CDHF implementations are then discussed. With this information at hand together with estimates for OPEN processing demands, it is shown that any shortfall in system capability for OPEN support can be remedied by either component upgrades or array processing attachments rather than a system redesign. In addition to a common system design, it is shown that there is significant potential for common software design, especially in the areas of data management software and non-user-unique production software. Archiving the CDHF data are discussed. Following that, cost examples for several modes of communications between the CDHF and Remote User Facilities are presented. Technology application is discussed

    Monitoring energy consumption with SIOX

    Get PDF
    In the face of the growing complexity of HPC systems, their growing energy costs, and the increasing difficulty to run applications efficiently, a number of monitoring tools have been developed during the last years. SIOX is one such endeavor, with a uniquely holistic approach: Not only does it aim to record a certain kind of data, but to make all relevant data available for analysis and optimization. Among other sources, this encompasses data from hardware energy counters and trace data from different hardware/software layers. However, not all data that can be recorded should be recorded. As such, SIOX needs good heuristics to determine when and what data needs to be collected, and the energy consumption can provide an important signal about when the system is in a state that deserves closer attention. In this paper, we show that SIOX can use Likwid to collect and report the energy consumption of applications, and present how this data can be visualized using SIOX’s web-interface. Furthermore, we outline how SIOX can use this information to intelligently adjust the amount of data it collects, allowing it to reduce the monitoring overhead while still providing complete information about critical situations

    Adaptive Mechanisms for Mobile Spatio-Temporal Applications

    Get PDF
    Mobile spatio-temporal applications play a key role in many mission critical fields, including Business Intelligence, Traffic Management and Disaster Management. They are characterized by high data volume, velocity and large and variable number of mobile users. The design and implementation of these applications should not only consider this variablility, but also support other quality requirements such as performance and cost. In this thesis we propose an architecture for mobile spatio-temporal applications, which enables multiple angles of adaptivity. We also introduce a two-level adaptation mechanism that ensures system performance while facilitating scalability and context-aware adaptivity. We validate the architecture and adaptation mechanisms by implementing a road quality assessment mobile application as a use case and by performing a series of experiments on cloud environment. We show that our proposed architecture can adapt at runtime and maintain service level objectives while offering cost-efficiency and robustness

    Secure Time-Aware Provenance for Distributed Systems

    Get PDF
    Operators of distributed systems often find themselves needing to answer forensic questions, to perform a variety of managerial tasks including fault detection, system debugging, accountability enforcement, and attack analysis. In this dissertation, we present Secure Time-Aware Provenance (STAP), a novel approach that provides the fundamental functionality required to answer such forensic questions – the capability to “explain” the existence (or change) of a certain distributed system state at a given time in a potentially adversarial environment. This dissertation makes the following contributions. First, we propose the STAP model, to explicitly represent time and state changes. The STAP model allows consistent and complete explanations of system state (and changes) in dynamic environments. Second, we show that it is both possible and practical to efficiently and scalably maintain and query provenance in a distributed fashion, where provenance maintenance and querying are modeled as recursive continuous queries over distributed relations. Third, we present security extensions that allow operators to reliably query provenance information in adversarial environments. Our extensions incorporate tamper-evident properties that guarantee eventual detection of compromised nodes that lie or falsely implicate correct nodes. Finally, the proposed research results in a proof-of-concept prototype, which includes a declarative query language for specifying a range of useful provenance queries, an interactive exploration tool, and a distributed provenance engine for operators to conduct analysis of their distributed systems. We discuss the applicability of this tool in several use cases, including Internet routing, overlay routing, and cloud data processing

    Future of networking is the future of Big Data, The

    Get PDF
    2019 Summer.Includes bibliographical references.Scientific domains such as Climate Science, High Energy Particle Physics (HEP), Genomics, Biology, and many others are increasingly moving towards data-oriented workflows where each of these communities generates, stores and uses massive datasets that reach into terabytes and petabytes, and projected soon to reach exabytes. These communities are also increasingly moving towards a global collaborative model where scientists routinely exchange a significant amount of data. The sheer volume of data and associated complexities associated with maintaining, transferring, and using them, continue to push the limits of the current technologies in multiple dimensions - storage, analysis, networking, and security. This thesis tackles the networking aspect of big-data science. Networking is the glue that binds all the components of modern scientific workflows, and these communities are becoming increasingly dependent on high-speed, highly reliable networks. The network, as the common layer across big-science communities, provides an ideal place for implementing common services. Big-science applications also need to work closely with the network to ensure optimal usage of resources, intelligent routing of requests, and data. Finally, as more communities move towards data-intensive, connected workflows - adopting a service model where the network provides some of the common services reduces not only application complexity but also the necessity of duplicate implementations. Named Data Networking (NDN) is a new network architecture whose service model aligns better with the needs of these data-oriented applications. NDN's name based paradigm makes it easier to provide intelligent features at the network layer rather than at the application layer. This thesis shows that NDN can push several standard features to the network. This work is the first attempt to apply NDN in the context of large scientific data; in the process, this thesis touches upon scientific data naming, name discovery, real-world deployment of NDN for scientific data, feasibility studies, and the designs of in-network protocols for big-data science
    • …
    corecore