852 research outputs found

    Optical computing: introduction by the guest editors to the feature in the 1 May 1988 issue

    Get PDF
    The feature in the 1 May 1988 issue of Applied Optics includes a collection of papers originally presented at the 1987 Lake Tahoe Topical Meeting on Optical Computing. These papers emphasize digital optical computing systems, optical interconnects, and devices for optical computing, but analog optical processing is considered as well

    An Aggregate Scalable Scheme for Expanding the Crossbar Switch Network; Design and Performance Analysis

    Get PDF
    New computer network topology, called Penta-S, is simulated. This network is built of cross bar switch modules. Each module connects 32 computer nodes. Each node has two ports, one connects the node to the crossbar switch module and the other connects the node to a correspondent client node in another module through a shuffle link. The performance of this network is simulated under various network sizes, packet lengths and loads. The results are compared with those obtained from Macramé project for Clos multistage interconnection network and 2D-Grid network. The throughput of Penta-S falls between the throughput of Clos and the throughput of 2D-Grid networks. The maximum throughput of Penta-S was obtained at packet length of 128 bytes. Also the throughput grows linearly with the network size. On the opposite of Clos and 2D-Grid networks, the per-node throughput of Penta-S improves as the network size grows. The per-packet latency proved to be better than that of Clos network for large packet lengths and high loads. Also the packet latency proved to be nearly constant against various loads. The cost-efficiency of Penta-S proved to be better than those of 2D-Grid and Clos networks for large number of nodes (>200 nodes in the case of 2D-Grid and >350 nodes in the case of Clos).On the opposite of other networks, the cost-efficiency of Penta-S grows as its size grows. So this topology suits large networks and high traffic loads

    Multistage Switching Architectures for Software Routers

    Get PDF
    Software routers based on personal computer (PC) architectures are becoming an important alternative to proprietary and expensive network devices. However, software routers suffer from many limitations of the PC architecture, including, among others, limited bus and central processing unit (CPU) bandwidth, high memory access latency, limited scalability in terms of number of network interface cards, and lack of resilience mechanisms. Multistage PC-based architectures can be an interesting alternative since they permit us to i) increase the performance of single software routers, ii) scale router size, iii) distribute packet manipulation and control functionality, iv) recover from single-component failures, and v) incrementally upgrade router performance. We propose a specific multistage architecture, exploiting PC-based routers as switching elements, to build a high-speed, largesize,scalable, and reliable software router. A small-scale prototype of the multistage router is currently up and running in our labs, and performance evaluation is under wa

    Silicon Photonic Flex-LIONS for Bandwidth-Reconfigurable Optical Interconnects

    Get PDF
    This paper reports the first experimental demonstration of silicon photonic (SiPh) Flex-LIONS, a bandwidth-reconfigurable SiPh switching fabric based on wavelength routing in arrayed waveguide grating routers (AWGRs) and space switching. Compared with the state-of-the-art bandwidth-reconfigurable switching fabrics, Flex-LIONS architecture exhibits 21× less number of switching elements and 2.9× lower on-chip loss for 64 ports, which indicates significant improvements in scalability and energy efficiency. System experimental results carried out with an 8-port SiPh Flex-LIONS prototype demonstrate error-free one-to-eight multicast interconnection at 25 Gb/s and bandwidth reconfiguration from 25 Gb/s to 100 Gb/s between selected input and output ports. Besides, benchmarking simulation results show that Flex-LIONS can provide a 1.33× reduction in packet latency and >1.5× improvements in energy efficiency when replacing the core layer switches of Fat-Tree topologies with Flex-LIONS. Finally, we discuss the possibility of scaling Flex-LIONS up to N = 1024 ports (N = M × W) by arranging M^2 W-port Flex-LIONS in a Thin-CLOS architecture using W wavelengths
    corecore