2,829 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    An Approach for Efficient Detection of Cephalometric Landmarks

    Get PDF
    AbstractIn this paper, a method is developed for the automated identification of cephalometric landmarks in orthodontics. The process of soft tissue edge detection is divided into two steps: detecting the sub-images that contained the required landmarks using combination of the Histograms of Oriented Gradients (HOG) descriptor with the Support Vector Machine (SVM), then utilizing Thresholding and Mathematical Morphological (TMM) algorithm to trace soft tissue profile. In addition, the mandible's edge is detected by the Active contours without edges (Chan-Vese method). Finally, the landmarks of soft tissue profile and the mandible's edge are pinned based on analyzing the contour plot of these lines. The simulation results have high accuracy

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    Near real-time early cancer detection using a graphics processing unit

    Get PDF
    Automatically detecting early cancer using medical images is challenging, yet very crucial to help save millions of lives in the early stages of cancer. In this work, we improved a method that was originally developed by Yamaguchi et al. from the Saga University in Saga Japan. The original method would first decompose the endoscopic image into four color elements: red, green, blue and luminance (RGBL). Next each component is again decomposed to non-overlapping blocks of smaller images. Each smaller image undergoes two phases of DWT(s) and finally the Fractal Dimension (FD) is calculated per smaller image and abnormal regions are detectable. Our proposed method not only used GPU technology to speed up processing, this method also applied edge enhancement via Gaussian Fuzzy Edge Enhancement. After edge enhancement, multiple thresholds (or tuning variables) were identified and adjusted to reduce computational requirements, decrease false positives and increase the accuracy of detecting early cancer. Most lesions where a physician had manually indicated that could be an area of concern were detected quickly, less than four seconds, which is roughly 25x quicker than the existing work. The false positive rate was reduced but still needs improvement. In the future, a Support Vector Machine (SVM) would be an ideal solutions to reduce the false positive rate while also aiding in increasing detection and SVM technology has been implemented on the GPU. Once a technology, like a SVM, is implemented with better results, video processing will be the nearing the final step to \u27Near Real Time Automatic Detection of Early Esophageal Cancer from an Endoscopic Image\u27 --Leaf iv
    • …
    corecore