1,177 research outputs found

    Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling.

    Get PDF
    Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings

    Giant Magnetoresistive Biosensors for Time-Domain Magnetorelaxometry: A Theoretical Investigation and Progress Toward an Immunoassay.

    Get PDF
    Magnetorelaxometry (MRX) is a promising new biosensing technique for point-of-care diagnostics. Historically, magnetic sensors have been primarily used to monitor the stray field of magnetic nanoparticles bound to analytes of interest for immunoassays and flow cytometers. In MRX, the magnetic nanoparticles (MNPs) are first magnetized and then the temporal response is monitored after removing the magnetic field. This new sensing modality is insensitive to the magnetic field homogeneity making it more amenable to low-power portable applications. In this work, we systematically investigated time-domain MRX by measuring the signal dependence on the applied field, magnetization time, and magnetic core size. The extracted characteristic times varied for different magnetic MNPs, exhibiting unique magnetic signatures. We also measured the signal contribution based on the MNP location and correlated the coverage with measured signal amplitude. Lastly, we demonstrated, for the first time, a GMR-based time-domain MRX bioassay. This approach validates the feasibility of immunoassays using GMR-based MRX and provides an alternative platform for point-of-care diagnostics

    On-chip Magnetoresistive Sensors for Detection and Localization of Paramagnetic Particles

    Get PDF
    This paper presents the work towards miniaturized magnetic biosensor array based on the detection of paramagnetic particles using the giant magnetoresistance (GMR) effect. GMR sensors have been studied for many years, but its application for on-chip integration and in complex configurations, as well as effective localization for Lab-On-Chip and Tissue Engineering applications is not yet explored. This work demonstrates the development of initial prototypes of 5 and 9 sensor GMR arrays of varying geometries and corresponding calibration and localization algorithms to detect and localize paramagnetic materials in 2D. The generation of a uniform magnetic field using a 16 magnet Halbach cylinder was also analyzed and optimized using FEA for different sensor configurations. Results show excellent localization for the fully calibrated 5 sensor arrays, with a mean (SD) error of 2.45 (1.61) mm for the ferrofluid as compared to 1.48 (1.14) mm for a strong ferromagnet for a 25Ă—25mm2 array surface. The 9sensor array similarly showed good results for full calibration

    Contactless measurement of electric current using magnetic sensors

    Get PDF
    We review recent advances in magnetic sensors for DC/AC current transducers, especially novel AMR sensors and integrated fluxgates, and we make critical comparison of their properties. Most contactless electric current transducers use magnetic cores to concentrate the flux generated by the measured current and to shield the sensor against external magnetic fields. In order to achieve this, the magnetic core should be massive. We present coreless current transducers which are lightweight, linear and free of hysteresis and remanence. We also show how to suppress their weak point: crosstalk from external currents and magnetic fields

    Magnetic sensors and gradiometers for detection of objects

    Get PDF
    Disertační práce popisuje vývoj nových detekčních zařízení s anizotropními magnetorezistoryThis thesis describes development of innovative sensor systems based on anisotropi

    Integration of GMR sensors with different technologies

    Get PDF
    Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications.Peer ReviewedPostprint (published version

    Shapeable magnetoelectronics

    Get PDF
    Inorganic nanomembranes are shapeable (flexible, printable, and even stretchable) and transferrable to virtually any substrate. These properties build the core concept for new technologies, which transform otherwise rigid high-speed devices into their shapeable counterparts. This research is motivated by the eagerness of consumer electronics towards being thin, lightweight, flexible, and even wearable. The realization of this concept requires all building blocks as we know them from rigid electronics (e.g., active elements, optoelectronics, magnetoelectronics, and energy storage) to be replicated in the form of (multi)functional nanomembranes, which can be reshaped on demand after fabrication. There are already a variety of shapeable devices commercially available, i.e., electronic displays, energy storage elements, and integrated circuitry, to name a few. From the beginning, the main focus was on the fabrication of shapeable high-speed electronics and optoelectronics. Only very recently, a new member featuring magnetic functionalities was added to the family of shapeable electronics. With their unique mechanical properties, the shapeable magnetic field sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of shapeable magnetoelectronics are proposed. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking, and touchless control capabilities. A variety of novel technologies, such as smart textiles, soft robotics and actuators, active medical implants, and soft consumer electronics, will benefit from these new magnetic functionalities. This review reflects the establishment of shapeable magnetic sensorics, describing the entire development from the first attempts to verify the functional concept to the realization of ready-to-use highly compliant and strain invariant sensor devices with remarkable robustness

    Entirely flexible on-site conditioned magnetic sensorics

    Get PDF
    The first entirely flexible integrated magnetic field sensor system is realized consisting of a flexible giant magnetoresistive bridge on-site conditioned using high-performance IGZO-based readout electronics. The system outperforms commercial fully integrated rigid magnetic sensors by at least one order of magnitude, whereas all components stay fully functional when bend to a radius of 5 mm

    Recent Developments of Magnetoresistive Sensors for Industrial Applications

    Get PDF
    The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling).DFG/CRC/653German Federal Ministry of Education and Researc
    • …
    corecore