683 research outputs found

    Performance Analysis of Adaptive Physical Layer Network Coding for Wireless Two-way Relaying

    Full text link
    The analysis of modulation schemes for the physical layer network-coded two way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. It was shown by Koike-Akino et. al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase. Depending on the signal set used at the end nodes, deep fades occur for a finite number of channel fade states referred as the singular fade states. The singular fade states fall into the following two classes: The ones which are caused due to channel outage and whose harmful effect cannot be mitigated by adaptive network coding are referred as the \textit{non-removable singular fade states}. The ones which occur due to the choice of the signal set and whose harmful effects can be removed by a proper choice of the adaptive network coding map are referred as the \textit{removable} singular fade states. In this paper, we derive an upper bound on the average end-to-end Symbol Error Rate (SER), with and without adaptive network coding at the relay, for a Rician fading scenario. It is shown that without adaptive network coding, at high Signal to Noise Ratio (SNR), the contribution to the end-to-end SER comes from the following error events which fall as SNR1\text{SNR}^{-1}: the error events associated with the removable singular fade states, the error events associated with the non-removable singular fade states and the error event during the BC phase. In contrast, for the adaptive network coding scheme, the error events associated with the removable singular fade states contributing to the average end-to-end SER fall as SNR2\text{SNR}^{-2} and as a result the adaptive network coding scheme provides a coding gain over the case when adaptive network coding is not used.Comment: 10 pages, 5 figure

    Symbol error rate analysis for M-QAM modulated physical-layer network coding with phase errors

    No full text
    Recent theoretical studies of physical-layer network coding (PNC) show much interest on high-level modulation, such as M-ary quadrature amplitude modulation (M-QAM), and most related works are based on the assumption of phase synchrony. The possible presence of synchronization error and channel estimation error highlight the demand of analyzing the symbol error rate (SER) performance of PNC under different phase errors. Assuming synchronization and a general constellation mapping method, which maps the superposed signal into a set of M coded symbols, in this paper, we analytically derive the SER for M-QAM modulated PNC under different phase errors. We obtain an approximation of SER for general M-QAM modulations, as well as exact SER for quadrature phase-shift keying (QPSK), i.e. 4-QAM. Afterwards, theoretical results are verified by Monte Carlo simulations. The results in this paper can be used as benchmarks for designing practical systems supporting PNC. © 2012 IEEE

    Source and Physical-Layer Network Coding for Correlated Two-Way Relaying

    Full text link
    In this paper, we study a half-duplex two-way relay channel (TWRC) with correlated sources exchanging bidirectional information. In the case, when both sources have the knowledge of correlation statistics, a source compression with physical-layer network coding (SCPNC) scheme is proposed to perform the distributed compression at each source node. When only the relay has the knowledge of correlation statistics, we propose a relay compression with physical-layer network coding (RCPNC) scheme to compress the bidirectional messages at the relay. The closed-form block error rate (BLER) expressions of both schemes are derived and verified through simulations. It is shown that the proposed schemes achieve considerable improvements in both error performance and throughput compared with the conventional non-compression scheme in correlated two-way relay networks (CTWRNs).Comment: 15 pages, 6 figures. IET Communications, 201

    Space-Time Coded Spatial Modulated Physical Layer Network Coding for Two-Way Relaying

    Full text link
    Using the spatial modulation approach, where only one transmit antenna is active at a time, we propose two transmission schemes for two-way relay channel using physical layer network coding with space time coding using Coordinate Interleaved Orthogonal Designs (CIOD's). It is shown that using two uncorrelated transmit antennas at the nodes, but using only one RF transmit chain and space-time coding across these antennas can give a better performance without using any extra resources and without increasing the hardware implementation cost and complexity. In the first transmission scheme, two antennas are used only at the relay, Adaptive Network Coding (ANC) is employed at the relay and the relay transmits a CIOD Space Time Block Code (STBC). This gives a better performance compared to an existing ANC scheme for two-way relay channel which uses one antenna each at all the three nodes. It is shown that for this scheme at high SNR the average end-to-end symbol error probability (SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In the second transmission scheme, two transmit antennas are used at all the three nodes, CIOD STBC's are transmitted in multiple access and broadcast phases. This scheme provides a diversity order of two for the average end-to-end SEP with an increased decoding complexity of O(M3)\mathcal{O}(M^3) for an arbitrary signal set and O(M2M)\mathcal{O}(M^2\sqrt{M}) for square QAM signal set.Comment: 9 pages, 7 figure

    Relay Selection with Network Coding in Two-Way Relay Channels

    Full text link
    In this paper, we consider the design of joint network coding (NC)and relay selection (RS) in two-way relay channels. In the proposed schemes, two users first sequentially broadcast their respective information to all the relays. We propose two RS schemes, a single relay selection with NC and a dual relay selection with NC. For both schemes, the selected relay(s) perform NC on the received signals sent from the two users and forward them to both users. The proposed schemes are analyzed and the exact bit error rate (BER) expressions are derived and verified through Monte Carlo simulations. It is shown that the dual relay selection with NC outperforms other considered relay selection schemes in two-way relay channels. The results also reveal that the proposed NC relay selection schemes provide a selection gain compared to a NC scheme with no relay selection, and a network coding gain relative to a conventional relay selection scheme with no NC.Comment: 11 pages, 5 figure
    corecore