5,310 research outputs found

    On Lasso refitting strategies

    Full text link
    A well-know drawback of l_1-penalized estimators is the systematic shrinkage of the large coefficients towards zero. A simple remedy is to treat Lasso as a model-selection procedure and to perform a second refitting step on the selected support. In this work we formalize the notion of refitting and provide oracle bounds for arbitrary refitting procedures of the Lasso solution. One of the most widely used refitting techniques which is based on Least-Squares may bring a problem of interpretability, since the signs of the refitted estimator might be flipped with respect to the original estimator. This problem arises from the fact that the Least-Squares refitting considers only the support of the Lasso solution, avoiding any information about signs or amplitudes. To this end we define a sign consistent refitting as an arbitrary refitting procedure, preserving the signs of the first step Lasso solution and provide Oracle inequalities for such estimators. Finally, we consider special refitting strategies: Bregman Lasso and Boosted Lasso. Bregman Lasso has a fruitful property to converge to the Sign-Least-Squares refitting (Least-Squares with sign constraints), which provides with greater interpretability. We additionally study the Bregman Lasso refitting in the case of orthogonal design, providing with simple intuition behind the proposed method. Boosted Lasso, in contrast, considers information about magnitudes of the first Lasso step and allows to develop better oracle rates for prediction. Finally, we conduct an extensive numerical study to show advantages of one approach over others in different synthetic and semi-real scenarios.Comment: revised versio

    Model Selection: Two Fundamental Measures of Coherence and Their Algorithmic Significance

    Full text link
    The problem of model selection arises in a number of contexts, such as compressed sensing, subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper generalizes the notion of \emph{incoherence} in the existing literature on model selection and introduces two fundamental measures of coherence---termed as the worst-case coherence and the average coherence---among the columns of a design matrix. In particular, it utilizes these two measures of coherence to provide an in-depth analysis of a simple one-step thresholding (OST) algorithm for model selection. One of the key insights offered by the ensuing analysis is that OST is feasible for model selection as long as the design matrix obeys an easily verifiable property. In addition, the paper also characterizes the model-selection performance of OST in terms of the worst-case coherence, \mu, and establishes that OST performs near-optimally in the low signal-to-noise ratio regime for N x C design matrices with \mu = O(N^{-1/2}). Finally, in contrast to some of the existing literature on model selection, the analysis in the paper is nonasymptotic in nature, it does not require knowledge of the true model order, it is applicable to generic (random or deterministic) design matrices, and it neither requires submatrices of the design matrix to have full rank, nor does it assume a statistical prior on the values of the nonzero entries of the data vector.Comment: 5 pages; Accepted for Proc. 2010 IEEE International Symposium on Information Theory (ISIT 2010

    Nonparametric Independence Screening in Sparse Ultra-High Dimensional Additive Models

    Full text link
    A variable screening procedure via correlation learning was proposed Fan and Lv (2008) to reduce dimensionality in sparse ultra-high dimensional models. Even when the true model is linear, the marginal regression can be highly nonlinear. To address this issue, we further extend the correlation learning to marginal nonparametric learning. Our nonparametric independence screening is called NIS, a specific member of the sure independence screening. Several closely related variable screening procedures are proposed. Under the nonparametric additive models, it is shown that under some mild technical conditions, the proposed independence screening methods enjoy a sure screening property. The extent to which the dimensionality can be reduced by independence screening is also explicitly quantified. As a methodological extension, an iterative nonparametric independence screening (INIS) is also proposed to enhance the finite sample performance for fitting sparse additive models. The simulation results and a real data analysis demonstrate that the proposed procedure works well with moderate sample size and large dimension and performs better than competing methods.Comment: 48 page
    corecore