111 research outputs found

    Feature analysis methods for intelligent breast imaging parameter optimisation using CMOS active pixel sensors

    Get PDF
    This thesis explores the concept of real time imaging parameter optimisation in digital mammography using statistical information extracted from the breast during a scan. Transmission and Energy dispersive x-ray diffraction (EDXRD) imaging were the two very different imaging modalities investigated. An attempt to determine if either could be used in a real time imaging system enabling differentiation between healthy and suspicious tissue regions was made. This would consequently enable local regions (potentially cancerous regions) within the breast to be imaged using optimised imaging parameters. The performance of possible statistical feature functions that could be used as information extraction tools were investigated using low exposure breast tissue images. The images were divided into eight regions of interest, seven regions corresponding to suspicious tissue regions marked by a radiologist, where the final region was obtained from a location in the breast consisting solely of healthy tissue. Results obtained from this investigation showed that a minimum of 82% of the suspicious tissue regions were highlighted in all images, whilst the total exposure incident on the sample was reduced in all instances. Three out of the seven (42%) intelligent images resulted in an increased contrast to noise ratio (CNR) compared to the conventionally produced transmission images. Three intelligent images were of similar diagnostic quality to their conventional counter parts whilst one was considerably lower. EDXRD measurements were made on breast tissue samples containing potentially cancerous tissue regions. As the technique is known to be able to distinguish between breast tissue types, diffraction signals were used to produce images corresponding to three suspicious tissue regions consequently enabling pixel intensities within the images to be analysed. A minimum of approximately 70% of the suspicious tissue regions were highlighted in each image, with at least 50% of each image remaining unsuspicious, hence was imaged with a reduced incident exposure

    An investigation into the use of charge-coupled devices for digital mammography

    Get PDF
    This thesis describes the design, optimisation, construction and evaluation of a laboratory based digital mammography system which uses phosphor coated charge-coupled devices (CCDs) for x-ray detection. The size mismatch between the breast and the CCD is overcome by operating the CCD in time delay and integration (TDI) mode and scanning across the breast. Multiparameter optimisations have been carried out for a wide range of digital mammography system configurations and requirements, with the aim of optimising the image quality for a given patient dose. The influence of slot width, exposure time, focal spot size, detector resolution and noise level, dose restrictions, patient thickness and x- ray tube target on the system configuration to give optimum image quality is examined. The system is fully characterised in terms of responsivity, dark current, modulation transfer functions (MTFs), noise power spectra (NPS) and spatial frequency dependent detective quantum efficiency (DQE(f)). Direct interactions of x-rays with the CCD are shown to give a significant increase in the high frequency values of the MTF. These interactions also act as a source of noise and act to significantly reduce the DQE(f) at all frequencies. A subjective comparison of images produced with the optimised prototype system with those produced using a conventional film-screen detector shows that these interactions must be removed if the prototype system is to produce images of equal quality to those currently produced using film-screen combinations. Other improvements to the system are suggested

    Characterization of photon counting CZT detectors for medical x-ray imaging and spectroscopy

    Get PDF
    Purpose: The purpose of this research was to characterize a photon counting cadmium zinc telluride (CZT) detector for medical x-ray imaging and spectroscopy purposes. The overall aim was to characterize CZT detector properties and to develop modifications and correction methods to address the limiting factors, making the detector clinically viable. Methods: Hole trapping issues were investigated through simulation and experiments with a large area single pixel CZT detector under three different irradiation geometries: edge-on, surface-on, and tilted angle irradiation. Characteristic x-ray escape was simulated using Monte Carlo methods and compared to measurements with a small pixel CZT imaging detector. Monoenergetic sources were measured with the small pixel CZT imaging detector to investigate energy blurring. Spectroscopy measurements were made both with and without hole trapping and characteristic escape corrections, and compared. Results: Tilted angle geometry improved the energy resolution compared to surface-on irradiation; peak-to-total ratios increased from 38% to 83% at 10º tilt for 122 keV. An increase was also seen for 59 keV, from 73% to 97% at 10º; simulation confirmed that tailing is a minor concern below 60 keV, even for surface-on irradiation. Characteristic x-ray escape simulations showed that side escape was less for strip pixels compared to square pixels (47% vs. 66% at 110 keV for 0.1 mm pixel width). Back escape increased from 27% for surface-on irradiation to 51% for 10º irradiation at 30 keV. For spectroscopy, modifications in detector geometry and electric field, as well as escape corrections, reduced the integral deviation between measured and true 120 kVp spectrum to 19% compared to 47% for operation without modification or correction. Conclusions: We showed that a CZT detector for diagnostic x-ray spectroscopy is clinically feasible, requiring simple modifications to current technology. However, the energy resolution of small pixel CZT imaging detectors requires substantial improvement to achieve clinical utility; several avenues of development are available to drive a CZT imaging detector towards its desired performance level. With these developments, advanced imaging systems using tilted-angle strip geometry, e.g., for photon-counting breast imaging, are likely to become feasible for routine clinical use

    Performance evaluation of detectors for digital radiography

    Get PDF
    To date the hospital radiological workflow is completing a transition from analog to digital technology. Since the X-rays digital detection technologies have become mature, hospitals are trading on the natural devices turnover to replace the conventional screen film devices with digital ones. The transition process is complex and involves not just the equipment replacement but also new arrangements for image transmission, display (and reporting) and storage. This work is focused on 2D digital detector’s characterization with a concern to specific clinical application; the systems features linked to the image quality are analyzed to assess the clinical performances, the conversion efficiency, and the minimum dose necessary to get an acceptable image. The first section overviews the digital detector technologies focusing on the recent and promising technological developments. The second section contains a description of the characterization methods considered in this thesis categorized in physical, psychophysical and clinical; theory, models and procedures are described as well. The third section contains a set of characterizations performed on new equipments that appears to be some of the most advanced technologies available to date. The fourth section deals with some procedures and schemes employed for quality assurance programs
    • …
    corecore