45 research outputs found

    Fractional Focusing and the Chirp Scaling Algorithm With Real Synthetic Aperture Radar Data

    Get PDF
    abstract: For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it does not require interpolation, and it can be used on both stripmap and spotlight SAR systems. Another transform that can be used to enhance the processing of SAR image formation is the fractional Fourier transform (FRFT). This transform has been recently introduced to the signal processing community, and it has shown many promising applications in the realm of SAR signal processing, specifically because of its close association to the Wigner distribution and ambiguity function. The objective of this work is to improve the application of the FRFT in order to enhance the implementation of the CSA for SAR processing. This will be achieved by processing real phase-history data from the RADARSAT-1 satellite, a multi-mode SAR platform operating in the C-band, providing imagery with resolution between 8 and 100 meters at incidence angles of 10 through 59 degrees. The phase-history data will be processed into imagery using the conventional chirp scaling algorithm. The results will then be compared using a new implementation of the CSA based on the use of the FRFT, combined with traditional SAR focusing techniques, to enhance the algorithm's focusing ability, thereby increasing the peak-to-sidelobe ratio of the focused targets. The FRFT can also be used to provide focusing enhancements at extended ranges.Dissertation/ThesisM.S. Electrical Engineering 201

    Простой алгоритм компенсации миграций светящихся точек по дальности для режима бокового обзора РСА (англ.)

    Get PDF
    Introduction.  Range Cell Migration (RCM) is a source of image blurring in synthetic aperture radars (SAR). There are two groups of signal processing algorithms used to compensate for migration effects. The first group includes algorithms that recalculate the SAR signal from the "along–track range – slant range" coordinate system into the "along-track range  –  cross-track range"  coordinates using the method of interpolation. The disadvantage of these algorithms is their considerable computational cost. Algorithms of the second group do not rely on interpolation thus being more attractive in terms of practical application.Aim. To synthesize a simple algorithm for compensating for RCM without using interpolation.Materials and methods. The synthesis was performed using a simplified version of the Chirp Scaling algorithm.Results.  A simple algorithm, which presents a modification of the Keystone Transform algorithm, was synthesized. The synthesized algorithm based on Fast Fourier Transforms and the Hadamard matrix products does not require interpolation.Conclusion. A verification of the algorithm quality via mathematical simulation confirmed its high efficiency. Implementation of the algorithm permits the number of computational operations to be reduced. The final radar image  produced using the proposed algorithm is built in the true Cartesian coordinates. The algorithm can be applied for SAR imaging of moving targets. The conducted analysis showed that the algorithm yields  the  image of a moving target provided that the coherent processing interval is sufficiently large. The image lies along a line, which angle of inclination is proportional to the projection of the target relative velocity on the line-of-sight. Estimation of the image parameters permits the target movement parameters to be determined.Введение. Миграции светящихся точек по дальности являются источником расфокусировки радиолокационных изображений в радиолокаторах с синтезированной апертурой (РСА). Существует две группы алгоритмов обработки сигналов для компенсации миграций. Первая группа включает алгоритмы, в которых на основании методов функциональной интерполяции осуществляется пересчет принятых сигналов из системы координат "продольная дальность – наклонная дальность"  в систему "продольная дальность – поперечная дальность". Недостатком алгоритмов данной группы является их высокая вычислительная сложность. Алгоритмы второй группы не используют интерполяционные методы и являются поэтому более привлекательными для практического использования.Цель.  Синтезировать простой алгоритм компенсации миграций без применения функциональной интерполяции.Материалы и методы. Синтез алгоритма осуществлен на основании упрощенной версии алгоритма ЛЧМ-фильтрации (Chirp Scaling Algorithm).Результаты. Синтезирован простой алгоритм, являющийся модификацией алгоритма "замкового камня".Алгоритм основан на использовании быстрых преобразований Фурье и поэлементных матричных умножений. В алгоритме не применяются методы интерполяции.Заключение. Проверка качества алгоритма на основе математического моделирования подтвердила его высокую эффективность. Использование алгоритма позволяет уменьшить количество вычислительных операций.Финальное радиолокационное изображение, получаемое с помощью алгоритма, строится в  истинной декартовой системе координат. Алгоритм может быть применен для построения РСА изображений движущихся целей. Данный в статье анализ показал, что алгоритм позволяет построить хорошо сфокусированное изображение движущейся цели, когда интервал синтезирования достаточно велик. Изображение движущейся цели выстраивается вдоль отрезка прямой, угол наклона которой пропорционален проекции относительной скорости цели на линию визирования. Оценка параметров изображения позволяет определить параметры движения цели

    Reduction of Vibration-Induced Artifacts in Synthetic Aperture Radar Imagery

    Get PDF
    Target vibrations introduce nonstationary phase modulation, which is termed the micro-Doppler effect, into returned synthetic aperture radar (SAR) signals. This causes artifacts, or ghost targets, which appear near vibrating targets in reconstructed SAR images. Recently, a vibration estimation method based on the discrete fractional Fourier transform (DFrFT) has been developed. This method is capable of estimating the instantaneous vibration accelerations and vibration frequencies. In this paper, a deghosting method for vibrating targets in SAR images is proposed. For single-component vibrations, this method first exploits the estimation results provided by the DFrFT-based vibration estimation method to reconstruct the instantaneous vibration displacements. A reference signal, whose phase is modulated by the estimated vibration displacements, is then synthesized to compensate for the vibration-induced phase modulation in returned SAR signals before forming the SAR image. The performance of the proposed method with respect to the signal-to-noise and signalto-clutter ratios is analyzed using simulations. Experimental results using the Lynx SAR system show a substantial reduction in ghosting caused by a 1.5-cm 0.8-Hz target vibration in a true SAR image

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries.Postprint (published version

    Research progress on geosynchronous synthetic aperture radar

    Get PDF
    Based on its ability to obtain two-dimensional (2D) high-resolution images in all-time and all-weather conditions, spaceborne synthetic aperture radar (SAR) has become an important remote sensing technique and the study of such systems has entered a period of vigorous development. Advanced imaging modes such as radar interferometry, tomography, and multi-static imaging, have been demonstrated. However, current in-orbit spaceborne SARs, which all operate in low Earth orbits, have relatively long revisit times ranging from several days to dozens of days, restricting their temporal sampling rate. Geosynchronous SAR (GEO SAR) is an active research area because it provides significant new capability, especially its much-improved temporal sampling. This paper reviews the research progress of GEO SAR technologies in detail. Two typical orbit schemes are presented, followed by the corresponding key issues, including system design, echo focusing, main disturbance factors, repeat-track interferometry, etc, inherent to these schemes. Both analysis and solution research of the above key issues are described. GEO SAR concepts involving multiple platforms are described, including the GEO SAR constellation, GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR, and formation flying GEO SAR (FF-GEO SAR). Due to the high potential of FF-GEO SAR for three-dimensional (3D) deformation retrieval and coherence-based SAR tomography (TomoSAR), we have recently carried out some research related to FF-GEO SAR. This research, which is also discussed in this paper, includes developing a formation design method and an improved TomoSAR processing algorithm. It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future

    Contribution to ground-based and UAV SAR systems for Earth observation

    Get PDF
    Mankind's way of life is the main driver of a planetary-scale change that is marked by the growing of human population's demand of energy, food, goods, services and information. As a result, it have emerged new ecological, economical, social and geopolitical concerns. In this scenario, SAR remote sensing is a potential tool that provides unique information about the Earth's properties and processes that can be used to solve societal challenges of local and global dimension. SARs, which are coherent systems that are able to provide high resolution images with weather independence, represent a suitable alternative for EO with diverse applications. Some examples of SAR application areas are topography (DEM generation with interferometry), agriculture (crop classification or soil moisture), or geology (monitoring surface deformation). In this framework, the encompassing objective of the present doctoral work has been part of the implementation and the subsequent evaluation of capabilities of two X-band SAR sensors. On the one hand, the RISKSAR-X radar designed to be operated at ground to monitor small-scale areas of observation and, on the other, the ARBRES-X sensor designed to be integrated into small UAVs. Despite its inherently dissimilar conception, the concurrence of both sensors has been evidenced along this manuscript. By taking advantage of the similarities between them, it has been possible to analogously assess both sensors to obtain conclusions. In this context, the common link has been the development of the polarimetric OtF operation mode of the RISKSAR-X, allowing this sensor to be operated equivalently to the ARBRES-X. Regarding the RISKSAR-X SAR sensor, several hardware contributions have been developed during part of this Ph.D. with the aim of improving the system performance. By endowing the system with the capability to operate in the fully polarimetric OtF acquisition mode, the relative long scanning time has been reduced. It is of great interest since the measured scatterers that present a short term variable reflectivity during the scanning time, such as moving vegetation, may degrade the extracted parameters from the retrieved data and the SAR image reconstruction. During this doctoral activity, it has been studied the image blurring, the decorrelation and the coherence degradation introduced by this effect. Furthermore, a new term in the differential interferometric coherence that takes into account the image blurring has been introduced. Concerning the ARBRES-X SAR system, one of the main objectives pursued during this Ph.D. has been the integration of the sensor into a small UAV MP overcoming restrictions of weight, size and aerodynamics of the platform. The use of this type of platforms is expected to open up new possibilities in airborne SAR remote sensing, since it offers much more versatility than the commonly used fixed wings UAVs. Different innovative flight strategies with this type of platforms have been assessed and some preliminary results have been obtained with the use of the ARBRES-X SAR system. During the course of the present doctoral work, much effort has been devoted to achieve the first experimental repeat-pass interfereometric results obtained with the UAV MP together with the ARBRES-X. Moreover, the sensor has been endowed with fully polarimetric capabilities by applying the improvements developed to the RISKSAR-X radar, which is another example of the duality between both systems. Finally, a vertical and a semicircular aperture have been successfully performed obtaining SLC images of the scenario, which envisages the capability of the UAV MP to perform tomographic images and complete circular apertures in the future. In conclusion, the UAV MP is a promising platform that opens new potentials for several applications, such as repeat-pass interferometry or differential tomography imaging with the realization of almost arbitrary trajectories.El mode de viure de la humanitat és el principal motor d'un canvi a escala planetària que està marcat per la creixent demanda d'energia, d'aliment, de béns, de serveis i d'informació de les poblacions humanes. Com a resultat, han sorgit noves inquietuds ecològiques, econòmiques, socials i geopolítiques. En aquest escenari, la detecció remota SAR és una eina potencial que proporciona informació única sobre les propietats i processos de la Terra que es pot utilitzar per resoldre reptes socials de dimensió local i global. Els SARs, que són sistemes coherents que poden proporcionar imatges d'alta resolució amb independència del temps, representen una alternativa adequada per a l'observació de la Terra. Alguns exemples d'àrees d'aplicació SAR són la topografia (generació de DEM amb interferometria), l'agricultura (classificació de cultius o humitat del sòl) o la geologia (monitoratge de deformació superficial). En aquest context, l'objectiu general del present doctorat ha estat part de la implementació i posterior avaluació de les capacitats de dos sensors SAR de banda X. D'una banda, el radar RISKSAR-X dissenyat per funcionar a terra i monitoritzar àrees d'observació a petita escala i, d'altra, el sensor ARBRES-X dissenyat per ser integrat en petits UAVs. Malgrat la seva concepció inherentment diferent, la concurrència d'ambdós sensors s'ha evidenciat al llarg d'aquest manuscrit. Aprofitant les similituds entre ells, s'han pogut avaluar de forma anàloga els dos sensors per obtenir conclusions. En aquest sentit, el vincle comú ha estat el desenvolupament del mode de funcionament polimètric OtF del RISKSAR-X, permetent que aquest sensor operi de forma equivalent a l'ARBRES-X. Pel que fa al sensor RISKSAR-X, s'han desenvolupat diverses contribucions hardware durant part d'aquest doctorat amb l'objectiu de millorar el rendiment del sistema. En dotar el sistema de la possibilitat d'operar en el mode d'adquisició totalment polarimètric OtF, s'ha reduït el relatiu llarg temps d'escaneig. Això és de gran interès ja que els blancs mesurats que presenten una reflectivitat variable a curt termini, com ara la vegetació en moviment, poden degradar els paràmetres extrets de les dades recuperades i la reconstrucció d'imatges SAR. Durant aquesta activitat doctoral s'ha estudiat el desenfocat de la imatge, la decorrelació i la degradació de la coherència introduïts per aquest efecte. A més, s'ha introduït un nou terme en la coherència interferomètrica diferencial que té en compte el desenfocat de la imatge. Pel que fa al sistema ARBRES-X, un dels principals objectius perseguits durant aquest doctorat ha estat la integració del sensor en un petit UAV MP superant les restriccions de pes, grandària i aerodinàmica de la plataforma. S'espera que l'ús d'aquest tipus de plataformes obri noves possibilitats en la detecció remota SAR aerotransportada, ja que ofereix molta més versatilitat que els UAV d'ales fixes habituals. S'han avaluat diferents estratègies de vol innovadores amb aquest tipus de plataformes i s'han obtingut resultats preliminars amb l'ús del sistema ARBRES-X. Durant el transcurs del present treball, s'ha dedicat molt esforç a assolir els primers resultats experimentals d'interferometria de múltiple passada obtinguts amb l'UAV MP conjuntament amb l'ARBRES-X. A més, el sensor ha estat dotat de capacitats totalment polarimètriques aplicant les millores desenvolupades al radar RISKSAR-X, el qual constitueix un altre exemple de la dualitat entre ambdós sistemes. Finalment, s'han realitzat amb èxit una apertura vertical i semicircular obtenint imatges SLC de l'escenari, el qual permet preveure la capacitat de l'UAV MP per a realitzar imatges tomogràfiques i apertures circulars completes en el futur. En conclusió, l'UAV MP és una plataforma prometedora que obre nous potencials per a diverses aplicacions, com ara la interferometria de múltiple passada o la tomografia diferencial amb la realització de trajectòries gairebé arbitràries

    Time domain synthetic aperture radar image processing using fast factorised backprojection

    Get PDF
    Includes bibliographical references (leaves 114-115).Fast Factorised Backprojection(FFBP) is a Synthetic Aperture Radar (SAR) focusing technique which uses Filtered Backprojection(FBP) to produce high quality images in the spatial domain at speeds which rival spectral domain SAR focusing methods. Synthetic Aperture Radar (SAR) focusing is fundamentally a matched filtering process which can be performed both in the spatial or spectral domain. Spatial domain SAR focusing techniques like filtered backprojection can, in theory, completely recover the scene from data with an infinite bandwidth acquired using an isotropic antenna along an arbitrary curved flight path of infinite length. This means that the focusing of a image using filtered backprojection is only limited by a finite bandwidth, non isotropic beam width and a finite flight path length. However filtered backprojection with an operation count which is proportional to 0 (n3 ) is computationally inefficient in speed when compared to the frequency domain SAR image reconstruction algorithms with an operational count which is proportional to 0 (n2 10g (n))

    Technique-Based Exploitation Of Low Grazing Angle SAR Imagery Of Ship Wakes

    Get PDF
    The pursuit of the understanding of the effect a ship has on water is a field of study that is several hundreds of years old, accelerated during the years of the industrial revolution where the efficiency of a ship’s engine and hull determined the utility of the burgeoning globally important sea lines of communication. The dawn of radar sensing and electronic computation have expanding this field of study still further where new ground is still being broken. This thesis looks to address a niche area of synthetic aperture radar imagery of ship wakes, specifically the imaging geometry utilising a low grazing angle, where significant non-linear effects are often dominant in the environment. The nuances of the synthetic aperture radar processing techniques compounded with the low grazing angle geometry to produce unusual artefacts within the imagery. It is the understanding of these artefacts that is central to this thesis. A sub-aperture synthetic aperture radar technique is applied to real data alongside coarse modelling of a ship and its wake before finally developing a full hydrodynamic model for a ship’s wake from first principles. The model is validated through comparison with previously developed work. The analysis shows that the resultant artefacts are a culmination of individual synthetic aperture radar anomalies and the reaction of the radar energy to the ambient sea surface and spike events
    corecore