45,012 research outputs found

    High-efficiency robust perovskite solar cells on ultrathin flexible substrates.

    Get PDF
    Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg(-1), given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells

    Flexible and wearable acoustic wave technologies

    Get PDF
    Flexible and wearable acoustic wave technology has recently attracted tremendous attention due to their wide-range applications in wearable electronics, sensing, acoustofluidics, and lab-on-a-chip, attributed to its advantages such as low power consumption, small size, easy fabrication, and passive/wireless capabilities. Great effort has recently been made in technology development, fabrication, and characterization of rationally designed structures for next-generation acoustic wave based flexible electronics. Herein, advances in fundamental principles, design, fabrication, and applications of flexible and wearable acoustic wave devices are reviewed. Challenges in material selections (including both flexible substrate and piezoelectric film) and structural designs for high-performance flexible and wearable acoustic wave devices are discussed. Recent advances in fabrication strategies, wave mode theory, working mechanisms, bending behavior, and performance/evaluation are reviewed. Key applications in wearable and flexible sensors and acoustofluidics, as well as lab-on-a-chip systems, are discussed. Finally, major challenges and future perspectives in this field are highlighted

    Light-emitting GaAs nanowires on a flexible substrate

    Get PDF
    Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core–shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices

    Characterisation and modelling of graphene FET detectors for flexible terahertz electronics

    Get PDF
    Low-cost electronics for future high-speed wireless communication and non-invasive inspection at terahertz frequencies require new materials with advanced mechanical and electronic properties. Graphene, with its unique combination of flexibility and high carrier velocity, can provide new opportunities for terahertz electronics. In particular, several types of power sensors based on graphene have been demonstrated and found suitable as fast and sensitive detectors over a wide part of the electromagnetic spectrum. Nevertheless, the underlying physics for signal detection are not well understood due to the lack of accurate characterisation methods, which hampers further improvement and optimisation of graphene-based power sensors. In this thesis, progress on modelling, design, fabrication and characterisation of terahertz graphene field-effect transistor (GFET) detectors is presented. Amajor part is devoted to the first steps towards flexible terahertz electronics.The characterisation and modelling of terahertz GFET detectors from 1 GHz to 1.1 THz are presented. The bias dependence, the scattering parameters and the detector voltage response were simultaneously accessed. It is shown that the voltage responsivity can be accurately described using a combination of a quasi-static equivalent circuit model, and the second-order series expansion terms of the nonlinear dc I-V characteristic. The videobandwidth, or IF bandwidth, of GFET detectors is estimated from heterodyne measurements. Moreover, the low-frequency noise of GFET detectors between 1 Hz and 1 MHz is investigated. From this, the room-temperature Hooge parameter of fabricated GFETs is extracted to be around 2*10^{-3}. It is found that the thermal noise dominates above 100 Hz, which sets the necessary switching time to reduce the effect of 1/f noise.A state-of-the-art GFET detector at 400 GHz, with a maximum measured optical responsivity of 74 V/W, and a minimum noise-equivalent power of 130 pW/Hz^{0.5} is demonstrated. It is shown that the detector performance is affected by the quality of the graphene film and adjacent layers, hence indicating the need to improve the fabrication process of GFETs.As a proof of concept, a bendable GFET terahertz detector on a plastic substrate is demonstrated. The effects of bending strain on dc I-V characteristics, responsivity and sensitivity are investigated. The detector exhibits a robust performance for tensile strain of more than 1% corresponding to a bending radius of 7 mm. Finally, a linear array of terahertz GFET detectors on a flexible substrate for imaging applications is fabricated and tested. The results show the possibility of realising bendable and curved focal plane arrays.In summary, in this work, the combination of improved device models and more accurate characterisation techniques of terahertz GFET detectors will allow for further optimisation. It is shown that graphene can open up for flexible terahertz electronics for future niche applications, such as wearable smart electronics and curved focal plane imaging

    A numerical study on the design trade-offs of a thin-film thermoelectric generator for large-area applications

    Full text link
    Thin-film thermoelectric generators with a novel folding scheme are proposed for large-area, low energy-density applications. Both the electrical current and heat transfer are in the plane of the thermoelectric thin-film, yet the heat transfer is across the plane of the module - similar to conventional bulk thermoelectric modules. With such designs, the heat leakage through the module itself can be minimized and the available temperature gradient maximized. Different from the previously reported corrugated thermoelectric generators, the proposed folding scheme enables high packing densities without compromising the thermal contact area to the heat source and sink. The significance of various thermal transport, or leakage, mechanisms in relation to power production is demonstrated for different packing densities and thicknesses of the module under heat sink-limited conditions. It is shown that the power factor is more important than ZT for predicting the power output of such thin-film devices. As very thin thermoelectric films are employed with modest temperature gradients, high aspect-ratio elements are needed to meet the - usually ignored - requirements of practical applications for the current. With the design trade-offs considered, the proposed devices may enable the exploitation of thermoelectric energy harvesting in new - large-area - applications at reasonable cost.Comment: 26 pages,5 figures, post-peer-review, pre-copyedit version of an article published in Renewable Energ
    • …
    corecore