4,384 research outputs found

    A Wised Routing Protocols for Leo Satellite Networks

    Full text link
    This Study proposes a routing strategy of combining a packet scheduling with congestion control policy that applied for LEO satellite network with high speed and multiple traffic. It not only ensures the QoS of different traffic, but also can avoid low priority traffic to be "starve" due to their weak resource competitiveness, thus it guarantees the throughput and performance of the network. In the end, we set up a LEO satellite network simulation platform in OPNET to verify the effectiveness of the proposed algorithm.Comment: The 10th Asian Control Conference (ASCC), Universiti Teknologi Malaysia, Malaysi

    Performance Analysis of Protocol Independent Multicasting-Dense Mode in Low Earth Orbit Satellite Networks

    Get PDF
    This research explored the implementation of Protocol Independent Multicasting - Dense Mode (PIM-DM) in a LEO satellite constellation. PIM-DM is a terrestrial protocol for distributing traffic efficiently between subscriber nodes by combining data streams into a tree-based structure, spreading from the root of the tree to the branches. Using this structure, a minimum number of connections are required to transfer data, decreasing the load on intermediate satellite routers. The PIM-DM protocol was developed for terrestrial systems and this research implemented an adaptation of this protocol in a satellite system. This research examined the PIM-DM performance characteristics which were compared to earlier work for On- Demand Multicast Routing Protocol (ODMRP) and Distance Vector Multicasting Routing Protocol (DVMRP) - all in a LEO satellite network environment. Experimental results show that PIM-DM is extremely scalable and has equivalent performance across diverse workloads. Three performance metrics are used to determine protocol performance in the dynamic LEO satellite environment, including Data-to- Overhead ratio, Received-to-Sent ratio, and End-to-End Delay. The OPNET® simulations show that the PIM-DM Data-to-Overhead ratio is approximately 80% and the protocol reliability is extremely high, achieving a Receive-to-Sent ratio of 99.98% across all loading levels. Finally, the PIM-DM protocol introduces minimal delay, exhibiting an average End-to-End Delay of approximately 76 ms; this is well within the time necessary to support real-time communications. Though fundamental differences between the DVMRP, ODMRP, and PIM-DM implementations precluded a direct comparison for each experiment, by comparing average values, PIM-DM generally provides equivalent or better performance

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    A DTN routing scheme for quasi-deterministic networks with application to LEO satellites topology

    Get PDF
    We propose a novel DTN routing algorithm, called DQN, specifically designed for quasi-deterministic networks with an application to satellite constellations. We demonstrate that our proposal efficiently forwards the information over a satellite network derived from the Orbcomm topology while keeping a low replication overhead. We compare our algorithm against other well-known DTN routing schemes and show that we obtain the lowest replication ratio without the knowledge of the topology and with a delivery ratio of the same order of magnitude than a reference theoretical optimal routing

    Optimization of intersatellite routing for real-time data download

    Get PDF
    The objective of this study is to develop a strategy to maximise the available bandwidth to Earth of a satellite constellation through inter-satellite links. Optimal signal routing is achieved by mimicking the way in which ant colonies locate food sources, where the 'ants' are explorative data packets aiming to find a near-optimal route to Earth. Demonstrating the method on a case-study of a space weather monitoring constellation; we show the real-time downloadable rate to Earth
    corecore