3,478 research outputs found

    Video modeling via implicit motion representations

    Get PDF
    Video modeling refers to the development of analytical representations for explaining the intensity distribution in video signals. Based on the analytical representation, we can develop algorithms for accomplishing particular video-related tasks. Therefore video modeling provides us a foundation to bridge video data and related-tasks. Although there are many video models proposed in the past decades, the rise of new applications calls for more efficient and accurate video modeling approaches.;Most existing video modeling approaches are based on explicit motion representations, where motion information is explicitly expressed by correspondence-based representations (i.e., motion velocity or displacement). Although it is conceptually simple, the limitations of those representations and the suboptimum of motion estimation techniques can degrade such video modeling approaches, especially for handling complex motion or non-ideal observation video data. In this thesis, we propose to investigate video modeling without explicit motion representation. Motion information is implicitly embedded into the spatio-temporal dependency among pixels or patches instead of being explicitly described by motion vectors.;Firstly, we propose a parametric model based on a spatio-temporal adaptive localized learning (STALL). We formulate video modeling as a linear regression problem, in which motion information is embedded within the regression coefficients. The coefficients are adaptively learned within a local space-time window based on LMMSE criterion. Incorporating a spatio-temporal resampling and a Bayesian fusion scheme, we can enhance the modeling capability of STALL on more general videos. Under the framework of STALL, we can develop video processing algorithms for a variety of applications by adjusting model parameters (i.e., the size and topology of model support and training window). We apply STALL on three video processing problems. The simulation results show that motion information can be efficiently exploited by our implicit motion representation and the resampling and fusion do help to enhance the modeling capability of STALL.;Secondly, we propose a nonparametric video modeling approach, which is not dependent on explicit motion estimation. Assuming the video sequence is composed of many overlapping space-time patches, we propose to embed motion-related information into the relationships among video patches and develop a generic sparsity-based prior for typical video sequences. First, we extend block matching to more general kNN-based patch clustering, which provides an implicit and distributed representation for motion information. We propose to enforce the sparsity constraint on a higher-dimensional data array signal, which is generated by packing the patches in the similar patch set. Then we solve the inference problem by updating the kNN array and the wanted signal iteratively. Finally, we present a Bayesian fusion approach to fuse multiple-hypothesis inferences. Simulation results in video error concealment, denoising, and deartifacting are reported to demonstrate its modeling capability.;Finally, we summarize the proposed two video modeling approaches. We also point out the perspectives of implicit motion representations in applications ranging from low to high level problems

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Development of Some Spatial-domain Preprocessing and Post-processing Algorithms for Better 2-D Up-scaling

    Get PDF
    Image super-resolution is an area of great interest in recent years and is extensively used in applications like video streaming, multimedia, internet technologies, consumer electronics, display and printing industries. Image super-resolution is a process of increasing the resolution of a given image without losing its integrity. Its most common application is to provide better visual effect after resizing a digital image for display or printing. One of the methods of improving the image resolution is through the employment of a 2-D interpolation. An up-scaled image should retain all the image details with very less degree of blurring meant for better visual quality. In literature, many efficient 2-D interpolation schemes are found that well preserve the image details in the up-scaled images; particularly at the regions with edges and fine details. Nevertheless, these existing interpolation schemes too give blurring effect in the up-scaled images due to the high frequency (HF) degradation during the up-sampling process. Hence, there is a scope to further improve their performance through the incorporation of various spatial domain pre-processing, post-processing and composite algorithms. Therefore, it is felt that there is sufficient scope to develop various efficient but simple pre-processing, post-processing and composite schemes to effectively restore the HF contents in the up-scaled images for various online and off-line applications. An efficient and widely used Lanczos-3 interpolation is taken for further performance improvement through the incorporation of various proposed algorithms. The various pre-processing algorithms developed in this thesis are summarized here. The term pre-processing refers to processing the low-resolution input image prior to image up-scaling. The various pre-processing algorithms proposed in this thesis are: Laplacian of Laplacian based global pre-processing (LLGP) scheme; Hybrid global pre-processing (HGP); Iterative Laplacian of Laplacian based global pre-processing (ILLGP); Unsharp masking based pre-processing (UMP); Iterative unsharp masking (IUM); Error based up-sampling(EU) scheme. The proposed algorithms: LLGP, HGP and ILLGP are three spatial domain preprocessing algorithms which are based on 4th, 6th and 8th order derivatives to alleviate nonuniform blurring in up-scaled images. These algorithms are used to obtain the high frequency (HF) extracts from an image by employing higher order derivatives and perform precise sharpening on a low resolution image to alleviate the blurring in its 2-D up-sampled counterpart. In case of unsharp masking based pre-processing (UMP) scheme, the blurred version of a low resolution image is used for HF extraction from the original version through image subtraction. The weighted version of the HF extracts are superimposed with the original image to produce a sharpened image prior to image up-scaling to counter blurring effectively. IUM makes use of many iterations to generate an unsharp mask which contains very high frequency (VHF) components. The VHF extract is the result of signal decomposition in terms of sub-bands using the concept of analysis filter bank. Since the degradation of VHF components is maximum, restoration of such components would produce much better restoration performance. EU is another pre-processing scheme in which the HF degradation due to image upscaling is extracted and is called prediction error. The prediction error contains the lost high frequency components. When this error is superimposed on the low resolution image prior to image up-sampling, blurring is considerably reduced in the up-scaled images. Various post-processing algorithms developed in this thesis are summarized in following. The term post-processing refers to processing the high resolution up-scaled image. The various post-processing algorithms proposed in this thesis are: Local adaptive Laplacian (LAL); Fuzzy weighted Laplacian (FWL); Legendre functional link artificial neural network(LFLANN). LAL is a non-fuzzy, local based scheme. The local regions of an up-scaled image with high variance are sharpened more than the region with moderate or low variance by employing a local adaptive Laplacian kernel. The weights of the LAL kernel are varied as per the normalized local variance so as to provide more degree of HF enhancement to high variance regions than the low variance counterpart to effectively counter the non-uniform blurring. Furthermore, FWL post-processing scheme with a higher degree of non-linearity is proposed to further improve the performance of LAL. FWL, being a fuzzy based mapping scheme, is highly nonlinear to resolve the blurring problem more effectively than LAL which employs a linear mapping. Another LFLANN based post-processing scheme is proposed here to minimize the cost function so as to reduce the blurring in a 2-D up-scaled image. Legendre polynomials are used for functional expansion of the input pattern-vector and provide high degree of nonlinearity. Therefore, the requirement of multiple layers can be replaced by single layer LFLANN architecture so as to reduce the cost function effectively for better restoration performance. With single layer architecture, it has reduced the computational complexity and hence is suitable for various real-time applications. There is a scope of further improvement of the stand-alone pre-processing and postprocessing schemes by combining them through composite schemes. Here, two spatial domain composite schemes, CS-I and CS-II are proposed to tackle non-uniform blurring in an up-scaled image. CS-I is developed by combining global iterative Laplacian (GIL) preprocessing scheme with LAL post-processing scheme. Another highly nonlinear composite scheme, CS-II is proposed which combines ILLGP scheme with a fuzzy weighted Laplacian post-processing scheme for more improved performance than the stand-alone schemes. Finally, it is observed that the proposed algorithms: ILLGP, IUM, FWL, LFLANN and CS-II are better algorithms in their respective categories for effectively reducing blurring in the up-scaled images
    corecore