400 research outputs found

    NAS (Numerical Aerodynamic Simulation Program) technical summaries, March 1989 - February 1990

    Get PDF
    Given here are selected scientific results from the Numerical Aerodynamic Simulation (NAS) Program's third year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP supercomputer. Topics covered include flow field analysis of fighter wing configurations, large-scale ocean modeling, the Space Shuttle flow field, advanced computational fluid dynamics (CFD) codes for rotary-wing airloads and performance prediction, turbulence modeling of separated flows, airloads and acoustics of rotorcraft, vortex-induced nonlinearities on submarines, and standing oblique detonation waves

    NAS technical summaries. Numerical aerodynamic simulation program, March 1992 - February 1993

    Get PDF
    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1992-93 operational year concluded with 399 high-speed processor projects and 91 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year

    Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

    Get PDF
    Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas

    NAS Technical Summaries, March 1993 - February 1994

    Get PDF
    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1993-94 operational year concluded with 448 high-speed processor projects and 95 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and funded under a cooperative agreement by the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the activities at ICOMP during 1994

    Multidisciplinary computational aerosciences

    Get PDF
    As the challenges of single disciplinary computational physics are met, such as computational fluid dynamics, computational structural mechanics, computational propulsion, computational aeroacoustics, computational electromagnetics, etc., scientists have begun investigating the combination of these single disciplines into what is being called multidisciplinary computational aerosciences (MCAS). The combination of several disciplines not only offers simulation realism but also formidable computational challenges. The solution of such problems will require computers orders of magnitude larger than those currently available. Such computer power can only be supplied by massively parallel machines because of the current speed-of-light limitation of conventional serial systems. Even with such machines, MCAS problems will require hundreds of hours for their solution. To efficiently utilize such a machine, research is required in three areas that include parallel architectures, systems software, and applications software. The main emphasis of this paper is the applications software element. Examples that demonstrate application software for multidisciplinary problems currently being solved at NASA Ames Research Center are presented. Pacing items for MCAS are discussed such as solution methodology, physical modeling, computer power, and multidisciplinary validation experiments

    Institute for Computational Mechanics in Propulsion (ICOMP)

    Get PDF
    The Institute for Computational Mechanics in Propulsion (ICOMP) is operated by the Ohio Aerospace Institute (OAI) and the NASA Lewis Research Center in Cleveland, Ohio. The purpose of ICOMP is to develop techniques to improve problem-solving capabilities in all aspects of computational mechanics related to propulsion. This report describes the accomplishments and activities at ICOMP during 1993

    Development of a Chemically Reacting Flow Solver on the Graphic Processing Units

    Get PDF
    The focus of the current research is to develop a numerical framework on the Graphic Processing Units (GPU) capable of modeling chemically reacting flow. The framework incorporates a high-order finite volume method coupled with an implicit solver for the chemical kinetics. Both the fluid solver and the kinetics solver are designed to take advantage of the GPU architecture to achieve high performance. The structure of the numerical framework is shown, detailing different aspects of the optimization implemented on the solver. The mathematical formulation of the core algorithms is presented along with a series of standard test cases, including both nonreactive and reactive flows, in order to validate the capability of the numerical solver. The performance results obtained with the current framework show the parallelization efficiency of the solver and emphasize the capability of the GPU in performing scientific calculations. Distribution A: Approved for public release; distribution unlimited. PA #1117

    HPC-enabling technologies for high-fidelity combustion simulations

    Get PDF
    With the increase in computational power in the last decade and the forthcoming Exascale supercomputers, a new horizon in computational modelling and simulation is envisioned in combustion science. Considering the multiscale and multiphysics characteristics of turbulent reacting flows, combustion simulations are considered as one of the most computationally demanding applications running on cutting-edge supercomputers. Exascale computing opens new frontiers for the simulation of combustion systems as more realistic conditions can be achieved with high-fidelity methods. However, an efficient use of these computing architectures requires methodologies that can exploit all levels of parallelism. The efficient utilization of the next generation of supercomputers needs to be considered from a global perspective, that is, involving physical modelling and numerical methods with methodologies based on High-Performance Computing (HPC) and hardware architectures. This review introduces recent developments in numerical methods for large-eddy simulations (LES) and direct-numerical simulations (DNS) to simulate combustion systems, with focus on the computational performance and algorithmic capabilities. Due to the broad scope, a first section is devoted to describe the fundamentals of turbulent combustion, which is followed by a general description of state-of-the-art computational strategies for solving these problems. These applications require advanced HPC approaches to exploit modern supercomputers, which is addressed in the third section. The increasing complexity of new computing architectures, with tightly coupled CPUs and GPUs, as well as high levels of parallelism, requires new parallel models and algorithms exposing the required level of concurrency. Advances in terms of dynamic load balancing, vectorization, GPU acceleration and mesh adaptation have permitted to achieve highly-efficient combustion simulations with data-driven methods in HPC environments. Therefore, dedicated sections covering the use of high-order methods for reacting flows, integration of detailed chemistry and two-phase flows are addressed. Final remarks and directions of future work are given at the end. }The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the CoEC project, grant agreement No. 952181 and the CoE RAISE project grant agreement no. 951733.Peer ReviewedPostprint (published version
    • …
    corecore