526 research outputs found

    Compilation techniques for irregular problems on parallel machines

    Get PDF
    Massively parallel computers have ushered in the era of teraflop computing. Even though large and powerful machines are being built, they are used by only a fraction of the computing community. The fundamental reason for this situation is that parallel machines are difficult to program. Development of compilers that automatically parallelize programs will greatly increase the use of these machines.;A large class of scientific problems can be categorized as irregular computations. In this class of computation, the data access patterns are known only at runtime, creating significant difficulties for a parallelizing compiler to generate efficient parallel codes. Some compilers with very limited abilities to parallelize simple irregular computations exist, but the methods used by these compilers fail for any non-trivial applications code.;This research presents development of compiler transformation techniques that can be used to effectively parallelize an important class of irregular programs. A central aim of these transformation techniques is to generate codes that aggressively prefetch data. Program slicing methods are used as a part of the code generation process. In this approach, a program written in a data-parallel language, such as HPF, is transformed so that it can be executed on a distributed memory machine. An efficient compiler runtime support system has been developed that performs data movement and software caching

    Run-time optimization of adaptive irregular applications

    Get PDF
    Compared to traditional compile-time optimization, run-time optimization could offer significant performance improvements when parallelizing and optimizing adaptive irregular applications, because it performs program analysis and adaptive optimizations during program execution. Run-time techniques can succeed where static techniques fail because they exploit the characteristics of input data, programs' dynamic behaviors, and the underneath execution environment. When optimizing adaptive irregular applications for parallel execution, a common observation is that the effectiveness of the optimizing transformations depends on programs' input data and their dynamic phases. This dissertation presents a set of run-time optimization techniques that match the characteristics of programs' dynamic memory access patterns and the appropriate optimization (parallelization) transformations. First, we present a general adaptive algorithm selection framework to automatically and adaptively select at run-time the best performing, functionally equivalent algorithm for each of its execution instances. The selection process is based on off-line automatically generated prediction models and characteristics (collected and analyzed dynamically) of the algorithm's input data, In this dissertation, we specialize this framework for automatic selection of reduction algorithms. In this research, we have identified a small set of machine independent high-level characterization parameters and then we deployed an off-line, systematic experiment process to generate prediction models. These models, in turn, match the parameters to the best optimization transformations for a given machine. The technique has been evaluated thoroughly in terms of applications, platforms, and programs' dynamic behaviors. Specifically, for the reduction algorithm selection, the selected performance is within 2% of optimal performance and on average is 60% better than "Replicated Buffer," the default parallel reduction algorithm specified by OpenMP standard. To reduce the overhead of speculative run-time parallelization, we have developed an adaptive run-time parallelization technique that dynamically chooses effcient shadow structures to record a program's dynamic memory access patterns for parallelization. This technique complements the original speculative run-time parallelization technique, the LRPD test, in parallelizing loops with sparse memory accesses. The techniques presented in this dissertation have been implemented in an optimizing research compiler and can be viewed as effective building blocks for comprehensive run-time optimization systems, e.g., feedback-directed optimization systems and dynamic compilation systems

    Efficient Machine-Independent Programming of High-Performance Multiprocessors

    Get PDF
    Parallel computing is regarded by most computer scientists as the most likely approach for significantly improving computing power for scientists and engineers. Advances in programming languages and parallelizing compilers are making parallel computers easier to use by providing a high-level portable programming model that protects software investment. However, experience has shown that simply finding parallelism is not always sufficient for obtaining good performance from today's multiprocessors. The goal of this project is to develop advanced compiler analysis of data and computation decompositions, thread placement, communication, synchronization, and memory system effects needed in order to take advantage of performance-critical elements in modern parallel architectures

    On the Performance of the Python Programming Language for Serial and Parallel Scientific Computations

    Get PDF

    An integrated runtime and compile-time approach for parallelizing structured and block structured applications

    Get PDF
    Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). A combined runtime and compile-time approach for parallelizing these applications on distributed memory parallel machines in an efficient and machine-independent fashion was described. A runtime library which can be used to port these applications on distributed memory machines was designed and implemented. The library is currently implemented on several different systems. To further ease the task of application programmers, methods were developed for integrating this runtime library with compilers for HPK-like parallel programming languages. How this runtime library was integrated with the Fortran 90D compiler being developed at Syracuse University is discussed. Experimental results to demonstrate the efficacy of our approach are presented. A multiblock Navier-Stokes solver template and a multigrid code were experimented with. Our experimental results show that our primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20 percent of the code parallelized by manually inserting calls to the runtime library

    VFC: The Vienna Fortran Compiler

    Get PDF

    Run-time parallelization and scheduling of loops

    Get PDF
    The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution

    Parallelizing irregular and pointer-based computations automatically: perspectives from logic and constraint programming

    Get PDF
    Irregular computations pose sorne of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures, which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. Starting in the mid 80s there has been significant progress in the development of parallelizing compilers for logic pro­gramming (and more recently, constraint programming) resulting in quite capable paralle­lizers. The typical applications of these paradigms frequently involve irregular computations, and make heavy use of dynamic data structures with pointers, since logical variables represent in practice a well-behaved form of pointers. This arguably makes the techniques used in these compilers potentially interesting. In this paper, we introduce in a tutoríal way, sorne of the problems faced by parallelizing compilers for logic and constraint programs and provide pointers to sorne of the significant progress made in the area. In particular, this work has resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for independence detection, cost models and cost analysis, cactus-stack memory management, techniques for managing speculative and irregular computations through task granularity control and dynamic task allocation such as work-stealing schedulers), etc
    corecore