73,822 research outputs found

    A real-time, portable, microcomputer-based jet engine simulator

    Get PDF
    Modern piloted flight simulators require detailed models of many aircraft components, such as the airframe, propulsion system, flight deck controls and instrumentation, as well as motion drive and visual display systems. The amount of computing power necessary to implement these systems can exceed that offered by dedicated mainframe computers. One approach to this problem is through the use of distributed computing, where parts of the simulation are assigned to computing subsystems, such as microcomputers. One such subsystem, such as microcomputers. One such subsystem, a real-time, portable, microcomputer-based jet engine simulator, is described in this paper. The simulator will be used at the NASA Ames Vertical Motion Simulator facility to perform calculations previously done on the facility's mainframe computer. The mainframe will continue to do all other system calculations and will interface to the engine simulator through analog I/0. The engine simulator hardware includes a 16-bit microcomputer and floating-point coprocessor. There is an 8 channel analog input board and an 8 channel analog output board. A model of a small turboshaft engine/control is coded in floating-point FORTRAN. The FORTRAN code and a data monitoring program run under the control of an assembly language real-time executive. The monitoring program allows the user to isplay and/or modify simulator variables on-line through a data terminal. A dual disk drive system is used for mass storage of programs and data. The CP/M-86 operating system provides file management and overall system control. The frame time for the simulator is 30 milliseconds, which includes all analog I/0 operations

    Embodiment, Cognition and the World Wide Web

    No full text
    Cognitive embodiment refers to the hypothesis that cognitive processes of all kinds are rooted in perception and action. Recent findings in cognitive neuroscience revealed that the motor cortex, long confined to the mere role of action programming and execution, in fact, plays a crucial role in complex cognitive abilities

    Brain-inspired conscious computing architecture

    Get PDF
    What type of artificial systems will claim to be conscious and will claim to experience qualia? The ability to comment upon physical states of a brain-like dynamical system coupled with its environment seems to be sufficient to make claims. The flow of internal states in such system, guided and limited by associative memory, is similar to the stream of consciousness. Minimal requirements for an artificial system that will claim to be conscious were given in form of specific architecture named articon. Nonverbal discrimination of the working memory states of the articon gives it the ability to experience different qualities of internal states. Analysis of the inner state flows of such a system during typical behavioral process shows that qualia are inseparable from perception and action. The role of consciousness in learning of skills, when conscious information processing is replaced by subconscious, is elucidated. Arguments confirming that phenomenal experience is a result of cognitive processes are presented. Possible philosophical objections based on the Chinese room and other arguments are discussed, but they are insufficient to refute claims articon’s claims. Conditions for genuine understanding that go beyond the Turing test are presented. Articons may fulfill such conditions and in principle the structure of their experiences may be arbitrarily close to human
    • …
    corecore