458 research outputs found

    Compilation of Abstracts for SC12 Conference Proceedings

    Get PDF
    1 A Breakthrough in Rotorcraft Prediction Accuracy Using Detached Eddy Simulation; 2 Adjoint-Based Design for Complex Aerospace Configurations; 3 Simulating Hypersonic Turbulent Combustion for Future Aircraft; 4 From a Roar to a Whisper: Making Modern Aircraft Quieter; 5 Modeling of Extended Formation Flight on High-Performance Computers; 6 Supersonic Retropropulsion for Mars Entry; 7 Validating Water Spray Simulation Models for the SLS Launch Environment; 8 Simulating Moving Valves for Space Launch System Liquid Engines; 9 Innovative Simulations for Modeling the SLS Solid Rocket Booster Ignition; 10 Solid Rocket Booster Ignition Overpressure Simulations for the Space Launch System; 11 CFD Simulations to Support the Next Generation of Launch Pads; 12 Modeling and Simulation Support for NASA's Next-Generation Space Launch System; 13 Simulating Planetary Entry Environments for Space Exploration Vehicles; 14 NASA Center for Climate Simulation Highlights; 15 Ultrascale Climate Data Visualization and Analysis; 16 NASA Climate Simulations and Observations for the IPCC and Beyond; 17 Next-Generation Climate Data Services: MERRA Analytics; 18 Recent Advances in High-Resolution Global Atmospheric Modeling; 19 Causes and Consequences of Turbulence in the Earths Protective Shield; 20 NASA Earth Exchange (NEX): A Collaborative Supercomputing Platform; 21 Powering Deep Space Missions: Thermoelectric Properties of Complex Materials; 22 Meeting NASA's High-End Computing Goals Through Innovation; 23 Continuous Enhancements to the Pleiades Supercomputer for Maximum Uptime; 24 Live Demonstrations of 100-Gbps File Transfers Across LANs and WANs; 25 Untangling the Computing Landscape for Climate Simulations; 26 Simulating Galaxies and the Universe; 27 The Mysterious Origin of Stellar Masses; 28 Hot-Plasma Geysers on the Sun; 29 Turbulent Life of Kepler Stars; 30 Modeling Weather on the Sun; 31 Weather on Mars: The Meteorology of Gale Crater; 32 Enhancing Performance of NASAs High-End Computing Applications; 33 Designing Curiosity's Perfect Landing on Mars; 34 The Search Continues: Kepler's Quest for Habitable Earth-Sized Planets

    Large Eddy Simulations of gaseous flames in gas turbine combustion chambers

    Get PDF
    Recent developments in numerical schemes, turbulent combustion models and the regular increase of computing power allow Large Eddy Simulation (LES) to be applied to real industrial burners. In this paper, two types of LES in complex geometry combustors and of specific interest for aeronautical gas turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which advanced measurements are possible and (2) combustion chambers of existing engines operated in realistic operating conditions. Laboratory-scale burners are designed to assess modeling and funda- mental flow aspects in controlled configurations. They are necessary to gauge LES strategies and identify potential limitations. In specific circumstances, they even offer near model-free or DNS-like LES computations. LES in real engines illustrate the potential of the approach in the context of industrial burners but are more difficult to validate due to the limited set of available measurements. Usual approaches for turbulence and combustion sub-grid models including chemistry modeling are first recalled. Limiting cases and range of validity of the models are specifically recalled before a discussion on the numerical breakthrough which have allowed LES to be applied to these complex cases. Specific issues linked to real gas turbine chambers are discussed: multi-perforation, complex acoustic impedances at inlet and outlet, annular chambers.. Examples are provided for mean flow predictions (velocity, temperature and species) as well as unsteady mechanisms (quenching, ignition, combustion instabil- ities). Finally, potential perspectives are proposed to further improve the use of LES for real gas turbine combustor designs

    NAS Technical Summaries, March 1993 - February 1994

    Get PDF
    NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefitting other supercomputer centers in government and industry. The 1993-94 operational year concluded with 448 high-speed processor projects and 95 parallel projects representing NASA, the Department of Defense, other government agencies, private industry, and universities. This document provides a glimpse at some of the significant scientific results for the year

    Abstracts to Be Presented at the 2015 Supercomputing Conference

    Get PDF
    Compilation of Abstracts to be presented at the 2015 Supercomputing Conferenc

    Interface Tracking and Solid-Fluid Coupling Techniques with Coastal Engineering Applications

    No full text
    Multi-material physics arise in an innumerable amount of engineering problems. A broadly scoped numerical model is developed and described in this thesis to simulate the dynamic interaction of multi-fluid and solid systems. It is particularly aimed at modelling the interaction of two immiscible fluids with solid structures in a coastal engineering context; however it can be extended to other similar areas of research. The Navier Stokes equations governing the fluids are solved using a combination of finite element (FEM) and control volume finite element (CVFE) discretisations. The sharp interface between the fluids is obtained through the compressive transport of material properties (e.g. material concentration). This behaviour is achieved through the CVFE method and a conveniently limited flux calculation scheme based on the Hyper-C method by Leonard (1991). Analytical and validation test cases are provided, consisting of steady and unsteady flows. To further enhance the method, improve accuracy, and exploit Lagrangian benefits, a novel moving mesh method is also introduced and tested. It is essentially an Arbitrary Lagrangian Eulerian method in which the grid velocity is defined by semi-explicitly solving an iterative functional minimisation problem. A multi-phase approach is used to introduce solid structure modelling. In this approach, solution of the velocity field for the fluid phase is obtained using Model B as explained by Gidaspow (1994, page 151). Interaction between the fluid phase and the solids is achieved through the means of a source term included in the fluid momentum equations. The interacting force is calculated through integration of this source term and adding a buoyancy contribution. The resulting force is passed to an external solid-dynamics model such as the Discrete Element Method (DEM), or the combined Finite Discrete Element Method (FEMDEM). The versatility and novelty of this combined modelling approach stems from its ability to capture the fluid interaction with particles of random size and shape. Each of the three main components of this thesis: the advection scheme, the moving mesh method, and the solid interaction are individually validated, and examples of randomly shaped and sized particles are shown. To conclude the work, the methods are combined together in the context of coastal engineering applications, where the complex coupled problem of waves impacting on breakwater amour units is chosen to demonstrate the simulation possibilities. The three components developed in this thesis significantly extend the application range of already powerful tools, such as Fluidity, for fluids-modelling and finite discrete element solids-modelling tools by bringing them together for the first time

    ISCR annual report FY 1998

    Full text link

    Nonlinear fluid-structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples

    Get PDF
    International audienceThe main focus of the present article is the development of a general solution framework for coupled and/or interaction multi-physics problems based upon re-using existing codes into software products. In particular, we discuss how to build this software tool for the case of fluid-structure interaction problem, from finite element code Feap for structural and finite volume code OpenFOAM for fluid mechanics. This is achieved by using the Component Template Library (CTL) to provide the coupling between the existing codes into a single software product. The present CTL code-coupling procedure accepts not only different discretization schemes, but different languages, with the solid component written in Fortran and fluid component written in \Cpp. Moreover, the resulting CTL-based code also accepts the nested parallelization. The proposed coupling strategy is detailed for explicit and implicit fixed-point iteration solver presented in the Part I of this paper, referred to Direct Force-Motion Transfer/Block-Gauss-Seidel. However, the proposed code-coupling framework can easily accommodate other solution schemes. The selected application examples are chosen to confirm the capability of the code-coupling strategy to provide a quick development of advanced computational tools for demanding practical problems, such as 3D fluid models with free-surface flows interacting with structures
    corecore