2,765 research outputs found

    Delimited continuations for Prolog

    Get PDF
    Delimited continuations are a famous control primitive that originates in the functional programming world. It allows the programmer to suspend and capture the remaining part of a computation in order to resume it later. We put a new Prolog-compatible face on this primitive and specify its semantics by means of a meta-interpreter. Moreover, we establish the power of delimited continuations in Prolog with several example definitions of high-level language features. Finally, we show how to easily and effectively add delimited continuations support to the WAM

    ์ƒ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์˜ ๊ฐ„์„ญ ์˜ค๋ฅ˜ ์™„ํ™” ๋ฐ RMW ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์ดํ˜์žฌ.Phase-change memory (PCM) announces the beginning of the new era of memory systems, owing to attractive characteristics. Many memory product manufacturers (e.g., Intel, SK Hynix, and Samsung) are developing related products. PCM can be applied to various circumstances; it is not simply limited to an extra-scale database. For example, PCM has a low standby power due to its non-volatility; hence, computation-intensive applications or mobile applications (i.e., long memory idle time) are suitable to run on PCM-based computing systems. Despite these fascinating features of PCM, PCM is still far from the general commercial market due to low reliability and long latency problems. In particular, low reliability is a painful problem for PCM in past decades. As the semiconductor process technology rapidly scales down over the years, DRAM reaches 10 nm class process technology. In addition, it is reported that the write disturbance error (WDE) would be a serious issue for PCM if it scales down below 54 nm class process technology. Therefore, addressing the problem of WDEs becomes essential to make PCM competitive to DRAM. To overcome this problem, this dissertation proposes a novel approach that can restore meta-stable cells on demand by levering two-level SRAM-based tables, thereby significantly reducing the number WDEs. Furthermore, a novel randomized approach is proposed to implement a replacement policy that originally requires hundreds of read ports on SRAM. The second problem of PCM is a long-latency compared to that of DRAM. In particular, PCM tries to enhance its throughput by adopting a larger transaction unit; however, the different unit size from the general-purpose processor cache line further degrades the system performance due to the introduction of a read-modify-write (RMW) module. Since there has never been any research related to RMW in a PCM-based memory system, this dissertation proposes a novel architecture to enhance the overall system performance and reliability of a PCM-based memory system having an RMW module. The proposed architecture enhances data re-usability without introducing extra storage resources. Furthermore, a novel operation that merges commands regardless of command types is proposed to enhance performance notably. Another problem is the absence of a full simulation platform for PCM. While the announced features of the PCM-related product (i.e., Intel Optane) are scarce due to confidential issues, all priceless information can be integrated to develop an architecture simulator that resembles the available product. To this end, this dissertation tries to scrape up all available features of modules in a PCM controller and implement a dedicated simulator for future research purposes.์ƒ๋ณ€ํ™” ๋ฉ”๋ชจ๋ฆฌ๋Š”(PCM) ๋งค๋ ฅ์ ์ธ ํŠน์„ฑ์„ ํ†ตํ•ด ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์˜ ์ƒˆ๋กœ์šด ์‹œ๋Œ€์˜ ์‹œ์ž‘์„ ์•Œ๋ ธ๋‹ค. ๋งŽ์€ ๋ฉ”๋ชจ๋ฆฌ ๊ด€๋ จ ์ œํ’ˆ ์ œ์กฐ์—…์ฒด(์˜ˆ : ์ธํ…”, SK ํ•˜์ด๋‹‰์Šค, ์‚ผ์„ฑ)๊ฐ€ ๊ด€๋ จ ์ œํ’ˆ ๊ฐœ๋ฐœ์— ๋ฐ•์ฐจ๋ฅผ ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. PCM์€ ๋‹จ์ˆœํžˆ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—๋งŒ ๊ตญํ•œ๋˜์ง€ ์•Š๊ณ  ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, PCM์€ ๋น„ํœ˜๋ฐœ์„ฑ์œผ๋กœ ์ธํ•ด ๋Œ€๊ธฐ ์ „๋ ฅ์ด ๋‚ฎ๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ„์‚ฐ ์ง‘์•ฝ์ ์ธ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋˜๋Š” ๋ชจ๋ฐ”์ผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์€(์ฆ‰, ๊ธด ๋ฉ”๋ชจ๋ฆฌ ์œ ํœด ์‹œ๊ฐ„) PCM ๊ธฐ๋ฐ˜ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์—์„œ ์‹คํ–‰ํ•˜๊ธฐ์— ์ ํ•ฉํ•˜๋‹ค. PCM์˜ ์ด๋Ÿฌํ•œ ๋งค๋ ฅ์ ์ธ ํŠน์„ฑ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  PCM์€ ๋‚ฎ์€ ์‹ ๋ขฐ์„ฑ๊ณผ ๊ธด ๋Œ€๊ธฐ ์‹œ๊ฐ„์œผ๋กœ ์ธํ•ด ์—ฌ์ „ํžˆ ์ผ๋ฐ˜ ์‚ฐ์—… ์‹œ์žฅ์—์„œ๋Š” DRAM๊ณผ ๋‹ค์†Œ ๊ฒฉ์ฐจ๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ ๋‚ฎ์€ ์‹ ๋ขฐ์„ฑ์€ ์ง€๋‚œ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ PCM ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์„ ์ €ํ•ดํ•˜๋Š” ๋ฌธ์ œ๋‹ค. ๋ฐ˜๋„์ฒด ๊ณต์ • ๊ธฐ์ˆ ์ด ์ˆ˜๋…„์— ๊ฑธ์ณ ๋น ๋ฅด๊ฒŒ ์ถ•์†Œ๋จ์— ๋”ฐ๋ผ DRAM์€ 10nm ๊ธ‰ ๊ณต์ • ๊ธฐ์ˆ ์— ๋„๋‹ฌํ•˜์˜€๋‹ค. ์ด์–ด์„œ, ์“ฐ๊ธฐ ๋ฐฉํ•ด ์˜ค๋ฅ˜ (WDE)๊ฐ€ 54nm ๋“ฑ๊ธ‰ ํ”„๋กœ์„ธ์Šค ๊ธฐ์ˆ  ์•„๋ž˜๋กœ ์ถ•์†Œ๋˜๋ฉด PCM์— ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๊ฐ€ ๋  ๊ฒƒ์œผ๋กœ ๋ณด๊ณ ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, WDE ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์€ PCM์ด DRAM๊ณผ ๋™๋“ฑํ•œ ๊ฒฝ์Ÿ๋ ฅ์„ ๊ฐ–์ถ”๋„๋ก ํ•˜๋Š” ๋ฐ ์žˆ์–ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ด ๋…ผ๋ฌธ์—์„œ๋Š” 2-๋ ˆ๋ฒจ SRAM ๊ธฐ๋ฐ˜ ํ…Œ์ด๋ธ”์„ ํ™œ์šฉํ•˜์—ฌ WDE ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์—ฌ ํ•„์š”์— ๋”ฐ๋ผ ์ค€ ์•ˆ์ • ์…€์„ ๋ณต์›ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ์›๋ž˜ SRAM์—์„œ ์ˆ˜๋ฐฑ ๊ฐœ์˜ ์ฝ๊ธฐ ํฌํŠธ๊ฐ€ ํ•„์š”ํ•œ ๋Œ€์ฒด ์ •์ฑ…์„ ๊ตฌํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ๋žœ๋ค ๊ธฐ๋ฐ˜์˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. PCM์˜ ๋‘ ๋ฒˆ์งธ ๋ฌธ์ œ๋Š” DRAM์— ๋น„ํ•ด ์ง€์—ฐ ์‹œ๊ฐ„์ด ๊ธธ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ํŠนํžˆ PCM์€ ๋” ํฐ ํŠธ๋žœ์žญ์…˜ ๋‹จ์œ„๋ฅผ ์ฑ„ํƒํ•˜์—ฌ ๋‹จ์œ„์‹œ๊ฐ„ ๋‹น ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ๋Ÿ‰ ํ–ฅ์ƒ์„ ๋„๋ชจํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฒ”์šฉ ํ”„๋กœ์„ธ์„œ ์บ์‹œ ๋ผ์ธ๊ณผ ๋‹ค๋ฅธ ์œ ๋‹› ํฌ๊ธฐ๋Š” ์ฝ๊ธฐ-์ˆ˜์ •-์“ฐ๊ธฐ (RMW) ๋ชจ๋“ˆ์˜ ๋„์ž…์œผ๋กœ ์ธํ•ด ์‹œ์Šคํ…œ ์„ฑ๋Šฅ์„ ์ €ํ•˜ํ•˜๊ฒŒ ๋œ๋‹ค. PCM ๊ธฐ๋ฐ˜ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์—์„œ RMW ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์—†์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ณธ ๋…ผ๋ฌธ์€ RMW ๋ชจ๋“ˆ์„ ํƒ‘์žฌ ํ•œ PCM ๊ธฐ๋ฐ˜ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์˜ ์ „๋ฐ˜์ ์ธ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ํ–ฅ์ƒํ•˜๊ฒŒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•„ํ‚คํ…์ฒ˜๋Š” ์ถ”๊ฐ€ ์Šคํ† ๋ฆฌ์ง€ ๋ฆฌ์†Œ์Šค๋ฅผ ๋„์ž…ํ•˜์ง€ ์•Š๊ณ ๋„ ๋ฐ์ดํ„ฐ ์žฌ์‚ฌ์šฉ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๋˜ํ•œ, ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด ๋ช…๋ น ์œ ํ˜•๊ณผ ๊ด€๊ณ„์—†์ด ๋ช…๋ น์„ ๋ณ‘ํ•ฉํ•˜๋Š” ์ƒˆ๋กœ์šด ์ž‘์—…์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ ๋‹ค๋ฅธ ๋ฌธ์ œ๋Š” PCM์„ ์œ„ํ•œ ์™„์ „ํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ”Œ๋žซํผ์ด ๋ถ€์žฌํ•˜๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. PCM ๊ด€๋ จ ์ œํ’ˆ(์˜ˆ : Intel Optane)์— ๋Œ€ํ•ด ๋ฐœํ‘œ๋œ ์ •๋ณด๋Š” ๋Œ€์™ธ๋น„ ๋ฌธ์ œ๋กœ ์ธํ•ด ๋ถ€์กฑํ•˜๋‹ค. ํ•˜์ง€๋งŒ ์•Œ๋ ค์ ธ ์žˆ๋Š” ์ •๋ณด๋ฅผ ์ ์ ˆํžˆ ์ทจํ•ฉํ•˜๋ฉด ์‹œ์ค‘ ์ œํ’ˆ๊ณผ ์œ ์‚ฌํ•œ ์•„ํ‚คํ…์ฒ˜ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋ณธ ๋…ผ๋ฌธ์€ PCM ๋ฉ”๋ชจ๋ฆฌ ์ปจํŠธ๋กค๋Ÿฌ์— ํ•„์š”ํ•œ ๋ชจ๋“  ๋ชจ๋“ˆ ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ–ฅํ›„ ์ด์™€ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ์—์„œ ์ถฉ๋ถ„ํžˆ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ „์šฉ ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค.1 INTRODUCTION 1 1.1 Limitation of Traditional Main Memory Systems 1 1.2 Phase-Change Memory as Main Memory 3 1.2.1 Opportunities of PCM-based System 3 1.2.2 Challenges of PCM-based System 4 1.3 Dissertation Overview 7 2 BACKGROUND AND PREVIOUS WORK 8 2.1 Phase-Change Memory 8 2.2 Mitigation Schemes for Write Disturbance Errors 10 2.2.1 Write Disturbance Errors 10 2.2.2 Verification and Correction 12 2.2.3 Lazy Correction 13 2.2.4 Data Encoding-based Schemes 14 2.2.5 Sparse-Insertion Write Cache 16 2.3 Performance Enhancement for Read-Modify-Write 17 2.3.1 Traditional Read-Modify-Write 17 2.3.2 Write Coalescing for RMW 19 2.4 Architecture Simulators for PCM 21 2.4.1 NVMain 21 2.4.2 Ramulator 22 2.4.3 DRAMsim3 22 3 IN-MODULE DISTURBANCE BARRIER 24 3.1 Motivation 25 3.2 IMDB: In Module-Disturbance Barrier 29 3.2.1 Architectural Overview 29 3.2.2 Implementation of Data Structures 30 3.2.3 Modification of Media Controller 36 3.3 Replacement Policy 38 3.3.1 Replacement Policy for IMDB 38 3.3.2 Approximate Lowest Number Estimator 40 3.4 Putting All Together: Case Studies 43 3.5 Evaluation 45 3.5.1 Configuration 45 3.5.2 Architectural Exploration 47 3.5.3 Effectiveness of the Replacement Policy 48 3.5.4 Sensitivity to Main Table Configuration 49 3.5.5 Sensitivity to Barrier Buffer Size 51 3.5.6 Sensitivity to AppLE Group Size 52 3.5.7 Comparison with Other Studies 54 3.6 Discussion 59 3.7 Summary 63 4 INTEGRATION OF AN RMW MODULE IN A PCM-BASED SYSTEM 64 4.1 Motivation 65 4.2 Utilization of DRAM Cache for RMW 67 4.2.1 Architectural Design 67 4.2.2 Algorithm 70 4.3 Typeless Command Merging 73 4.3.1 Architectural Design 73 4.3.2 Algorithm 74 4.4 An Alternative Implementation: SRC-RMW 78 4.4.1 Implementation of SRC-RMW 78 4.4.2 Design Constraint 80 4.5 Case Study 82 4.6 Evaluation 85 4.6.1 Configuration 85 4.6.2 Speedup 88 4.6.3 Read Reliability 91 4.6.4 Energy Consumption: Selecting a Proper Page Size 93 4.6.5 Comparison with Other Studies 95 4.7 Discussion 97 4.8 Summary 99 5 AN ALL-INCLUSIVE SIMULATOR FOR A PCM CONTROLLER 100 5.1 Motivation 101 5.2 PCMCsim: PCM Controller Simulator 103 5.2.1 Architectural Overview 103 5.2.2 Underlying Classes of PCMCsim 104 5.2.3 Implementation of Contention Behavior 108 5.2.4 Modules of PCMCsim 109 5.3 Evaluation 116 5.3.1 Correctness of the Simulator 116 5.3.2 Comparison with Other Simulators 117 5.4 Summary 119 6 Conclusion 120 Abstract (In Korean) 141 Acknowledgment 143๋ฐ•

    A research roadmap towards achieving scalability in model driven engineering

    Get PDF
    International audienceAs Model-Driven Engineering (MDE) is increasingly applied to larger and more complex systems, the current generation of modelling and model management technologies are being pushed to their limits in terms of capacity and eciency. Additional research and development is imperative in order to enable MDE to remain relevant with industrial practice and to continue delivering its widely recognised productivity , quality, and maintainability benefits. Achieving scalabil-ity in modelling and MDE involves being able to construct large models and domain-specific languages in a systematic manner, enabling teams of modellers to construct and refine large models in a collaborative manner, advancing the state of the art in model querying and transformations tools so that they can cope with large models (of the scale of millions of model elements), and providing an infrastructure for ecient storage, indexing and retrieval of large models. This paper attempts to provide a research roadmap for these aspects of scalability in MDE and outline directions for work in this emerging research area

    A Transactional Model and Platform for Designing and Implementing Reactive Systems

    Get PDF
    A reactive program is one that has ongoing interactions with its environment. Reactive programs include those for embedded systems, operating systems, network clients and servers, databases, and smart phone apps. Reactive programs are already a core part of our computational and physical infrastructure and will continue to proliferate within our society as new form factors, e.g. wireless sensors, and inexpensive (wireless) networking are applied to new problems. Asynchronous concurrency is a fundamental characteristic of reactive systems that makes them difficult to develop. Threads are commonly used for implementing reactive systems, but they may magnify problems associated with asynchronous concurrency, as there is a gap between the semantics of thread-based computation and the semantics of reactive systems: reactive software developed with threads often has subtle timing bugs and tends to be brittle and non-reusable as a holistic understanding of the software becomes necessary to avoid concurrency hazards such as data races, deadlock, and livelock. Based on these problems with the state of the art, we believe a new model for developing and implementing reactive systems is necessary. This dissertation makes four contributions to the state of the art in reactive systems. First, we propose a formal yet practical model for (asynchronous) reactive systems called reactive components. A reactive component is a set of state variables and atomic transitions that can be composed with other reactive components to yield another reactive component. The transitions in a system of reactive components are executed by a scheduler. The reactive component model is based on concepts from temporal logic and models like UNITY and I/O Automata. The major contribution of the reactive component model is a formal method for principled composition, which ensures that 1) the result of composition is always another reactive component, for consistency of reasoning; 2) systems may be decomposed to an arbitrary degree and depth, to foster divide-and-conquer approaches when designing and re-use when implementing; 3)~the behavior of a reactive component can be stated in terms of its interface, which is necessary for abstraction; and 4) properties of reactive components that are derived from transitions protected by encapsulation are preserved through composition and can never be violated, which permits assume-guarantee reasoning. Second, we develop a prototypical programming language for reactive components called rcgo that is based on the syntax and semantics of the Go programming language. The semantics of the rcgo language enforce various aspects of the reactive component model, e.g., the isolation of state between components and safety of concurrency properties, while permitting a number of useful programming techniques, e.g., reference and move semantics for efficient communication among reactive components. For tractability, we assume that each system contains a fixed set of components in a fixed configuration. Third, we provide an interpreter for the rcgo language to test the practicality of the assumptions upon which the reactive component model are founded. The interpreter contains an algorithm that checks for composition hazards like recursively defined transitions and non-deterministic transitions. Transitions are executed using a novel calling convention that can be implemented efficiently on existing architectures. The run-time system also contains two schedulers that use the results of composition analysis to execute non-interfering transitions concurrently. Fourth, we compare the performance of each scheduler in the interpreter to the performance of a custom compiled multi-threaded program, for two reactive systems. For one system, the combination of the implementation and hardware biases it toward an event-based solution, which was confirmed when the reactive component implementation outperformed the custom implementation due to reduced context switching. For the other system, the custom implementation is not prone to excessive context switches and outperformed the reactive component implementations. These results demonstrate that reactive components may be a viable alternative to threads in practice, but that additional work is necessary to generalize this claim
    • โ€ฆ
    corecore