20 research outputs found

    High-Performance Ternary (4:2) Compressor Based on Capacitive Threshold Logic

    Get PDF
    This paper presents a ternary (4:2) compressor, which is an important component in multiplication. However, the structure differs from the binary counterpart since the ternary model does not require carry signals. The method of capacitive threshold logic (CTL) is used to achieve the output signals directly. Unlike the previously presented similar structure, the entire capacitor network is divided into two parts. This segregation results in higher reliability and robustness against unwanted process, voltage, and temperature (PVT) variations. Simulations are performed by HSPICE and 32nm CNFET technology. Simulation results demonstrate about 94% higher performance in terms of power-delay product (PDP) for the new design over the previous one

    Energy Efficient CNTFET Based Full Adder Using Hybrid Logic

    Get PDF
    Full Adder is the basic element for arithmetic operations used in Very Large Scale Integrated (VLSI) circuits, therefore, optimization of 1-bit full adder cell improves the overall performance of electronic devices. Due to unique mechanical and electrical characteristics, carbon nanotube field effect transistors (CNTFET) are found to be the most suitable alternative for metal oxide field effect transistor (MOSFET). CNTFET transistor utilizes carbon nanotube (CNT) in the channel region. In this paper, high speed, low power and reduced transistor count full adder cell using CNTFET 32nm technology is presented. Two input full swing XOR gate is designed using 4 transistors which is further used to generate Sum and Carry output signals with the help of Gate-Diffusion-Input (GDI) Technique thus reducing the number of transistors involved. Proposed design simulated in Cadence Virtuoso with 32nm CNTFET technology and results is better design as compared to existing circuits in terms of Power, Delay, Power-Delay-Product (PDP), Energy Consumption and Energy-Delay-Product (EDP)

    Designing a Novel High Performance Four-to-Two Compressor Cell Based on CNTFET Technology for Low Voltages

    Get PDF
    Compressor cell is often placed in critical path of multiplier circuits to perform partial product summation. Therefore it plays a significant role in determining the entire performance of multiplier and digital system. Respecting to the necessity of low power design for portable electronic, designing a low power and high performance compressors seems to be a good solution to overcome of these problems for computations. In this paper a novel high performance four-to-two compressor cell is proposed using Carbon Nanotube Field Effect Transistors (CNTFETs) technology. The new cell is based on Majority Function, NOR, and NAND gates. The main advantage of proposed design in comparison with former cells is the ease of obtaining CARRY output by means of Majority function. Simulations have been done with 32nm technology node using Synopsys HSPICE software. Simulation results confirm the priority of the proposed cell compared to other state-of-the-art four-to-two compressor cells

    A Novel Ultra Low-Power 10T CNFET-Based Full Adder Cell Design in 32nm Technology

    Get PDF
    Nowadays, energy consumption is the main concern in portable electronic systems such as laptops, smart mobile phones, personal digital assistances (PDAs) and so forth. Considering that the 1-bit Full adder cell has been the determinant circuit due to its wide usage in these systems, it affects the entire performance of the electronic system. In this paper, a novel low-power and low-energy 10 transistor (10T) Full Adder cell using NAND/NOR functions based on carbon nanotube field effect transistors (CNFETs) is presented. The proposed cell showed superiority in terms of power-delay product (PDP) compared to the other cells under different simulation condition, such as power supply, temperature, load and operating frequency variations. Moreover, a Monte Carlo (MC) simulation was conducted to study the reliability of the proposed cell against manufacturing process variations (i.e. the variations of diameters of carbon nanotubes). Simulations confirmed the robustness of the proposed cell

    Novel Ternary Logic Gates Design in Nanoelectronics

    Get PDF
    In this paper, standard ternary logic gates are initially designed to considerably reduce static power consumption. This study proposes novel ternary gates based on two supply voltages in which the direct current is eliminated and the leakage current is reduced considerably. In addition, ST-OR and ST-AND are generated directly instead of ST-NAND and ST-NOR. The proposed gates have a high noise margin near V_(DD)/4. The simulation results indicated that the power consumption and PDP underwent a~sharp decrease and noise margin showed a considerable increase in comparison to both one supply and two supply based designs in previous works. PDP is improved in the proposed OR, as compared to one supply and two supply based previous works about 83% and 63%, respectively. Also, a memory cell is designed using the proposed STI logic gate, which has a considerably lower static power to store logic ‘1’ and the static noise margin, as compared to other designs

    Design of Adiabatic MTJ-CMOS Hybrid Circuits

    Full text link
    Low-power designs are a necessity with the increasing demand of portable devices which are battery operated. In many of such devices the operational speed is not as important as battery life. Logic-in-memory structures using nano-devices and adiabatic designs are two methods to reduce the static and dynamic power consumption respectively. Magnetic tunnel junction (MTJ) is an emerging technology which has many advantages when used in logic-in-memory structures in conjunction with CMOS. In this paper, we introduce a novel adiabatic hybrid MTJ/CMOS structure which is used to design AND/NAND, XOR/XNOR and 1-bit full adder circuits. We simulate the designs using HSPICE with 32nm CMOS technology and compared it with a non-adiabatic hybrid MTJ/CMOS circuits. The proposed adiabatic MTJ/CMOS full adder design has more than 7 times lower power consumtion compared to the previous MTJ/CMOS full adder
    corecore