17,822 research outputs found

    H.264 motion estimator design

    Get PDF
    Recently, a new international standard for video compression named H.264 / MPEG-4 Part 10 is developed. This new standard offers significantly better video compression efficiency than previous international standards. The variable block size motion estimation is the most compute-intensive part of an H.264 video encoder. The full search method is impractical for real-time implementations since it requires a high computational complexity. Therefore, many fast motion estimation algorithms have been developed for real-time implementations. In this thesis, we used an SAD reuse based hierarchical motion estimation algorithm for real-time H.264 / MPEG-4 Part 10 video coding. This algorithm uses the Lagrangian cost parameter (SAD+λR) for selecting the best motion vector. We designed a high performance and low cost hardware architecture for real-time implementation of this algorithm. We have considered several alternative designs and decided on this architecture based on a cost/performance analysis. This architecture uses a novel data flow resulting in a low cost and high performance hardware. This hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 63 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 25 VGA frames (640x480) or 76 CIF frames (352x288) per second

    Novel VLSI architecture of motion estimation and compensation for H.264 standard

    Get PDF
    This thesis presents a high performance novel VLSI architecture of a H.264 motion estimator, which can be used as a building block for real-time H.264 video compression. Full-search block matching algorithm was used in this design. Pipeline structure was developed for variable block size processing units to work in parallel. The speed at 125MHz is good for real time motion estimation with 25/sec frame rate and 640x480 resolutions. The processing speed is also independent of the threshold level of Sum of Absolute Difference (SAD), which is used to determine the size of the macro block. The architecture is implemented with Register Transfer Level VHDL codes then synthesized with Synopsys Design Compiler, using TSMC 0.25um technology. The synthesized Application Specific Integrated Circuits (ASIC\u27s) has an area of 664um x 664um

    Dynamically variable step search motion estimation algorithm and a dynamically reconfigurable hardware for its implementation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. For the recently available High Definition (HD) video formats, the computational complexity of De full search (FS) ME algorithm is prohibitively high, whereas the PSNR obtained by fast search ME algorithms is low. Therefore, ill this paper, we present Dynamically Variable Step Search (DVSS) ME algorithm for Processing high definition video formats and a dynamically reconfigurable hardware efficiently implementing DVSS algorithm. The architecture for efficiently implementing DVSS algorithm. The simulation results showed that DVSS algorithm performs very close to FS algorithm by searching much fewer search locations than FS algorithm and it outperforms successful past search ME algorithms by searching more search locations than these algorithms. The proposed hardware is implemented in VHDL and is capable, of processing high definition video formats in real time. Therefore, it can be used in consumer electronics products for video compression, frame rate up-conversion and de-interlacing(1)

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    A High permormance hardware architecture for an sad reuse based hierarchical motion estimation algorithm for H.264 video coding

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of an SAD reuse based hierarchical motion estimation algorithm for H.264 / MPEG4 Part 10 video coding. This hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 68 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 27 VGA frames (640x480) or 82 CIF frames (352x288) per second

    A high performance hardware architecture for one bit transform based motion estimation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. One bit transform (IBT) based ME algorithms have low computational complexity. Therefore, in this paper, we propose a high performance systolic hardware architecture for IBT based ME. The proposed hardware performs full search ME for 4 Macroblocks in parallel and it is the fastest IBT based ME hardware reported in the literature. In addition, it uses less on-chip memory than the previous IBT based ME hardware by using a novel data reuse scheme and memory organization. The proposed hardware is implemented in Verilog HDL. It consumes %34 of the slices in a Xilinx XC2VP30-7 FPGA. It works at 115 MHz in the same FPGA and is capable of processing 50 1920x1080 full High Definition frames per second. Therefore, it can be used in consumer electronics products that require real-time video processing or compression

    Hardware acceleration architectures for MPEG-Based mobile video platforms: a brief overview

    Get PDF
    This paper presents a brief overview of past and current hardware acceleration (HwA) approaches that have been proposed for the most computationally intensive compression tools of the MPEG-4 standard. These approaches are classified based on their historical evolution and architectural approach. An analysis of both evolutionary and functional classifications is carried out in order to speculate on the possible trends of the HwA architectures to be employed in mobile video platforms

    Statistical lossless compression of space imagery and general data in a reconfigurable architecture

    Get PDF
    corecore