193 research outputs found

    Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordDocument pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE). Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support vector machine, our proposed PSGE has outperformed the state-of-The-art results in recognition of handwritten words as well as graphical symbols.European Union Horizon 2020Ministerio de Educación, Cultura y Deporte, SpainRamon y Cajal FellowshipCERCA Program/Generalitat de Cataluny

    Stochastic graphlet embedding

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordGraph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semistructured data as graphs where nodes correspond to primitives (parts, interest points, and segments) and edges characterize the relationships between these primitives. However, these nonvectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of - explicit/implicit - graph vectorization and embedding. This embedding process should be resilient to intraclass graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When combined with maximum margin classifiers, these graphlet-based representations have a positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.Agence Nationale de la Recherche (ANR

    Hierarchical stochastic graphlet embedding for graph-based pattern recognition

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordDespite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable with many machine learning tools. This is because of the incompatibility of most of the mathematical operations in graph domain. Graph embedding has been proposed as a way to tackle these difficulties, which maps graphs to a vector space and makes the standard machine learning techniques applicable for them. However, it is well known that graph embedding techniques usually suffer from the loss of structural information. In this paper, given a graph, we consider its hierarchical structure for mapping it into a vector space. The hierarchical structure is constructed by topologically clustering the graph nodes, and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure of graph is constructed, we consider its various configurations of its parts, and use stochastic graphlet embedding (SGE) for mapping them into vector space. Broadly speaking, SGE produces a distribution of uniformly sampled low to high order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched through the distribution of low to high order stochastic graphlets complements each other and include important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, and it is not a surprise that we obtain more robust vector space embedding of graphs. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.European Union Horizon 2020Ministerio de Educación, Cultura y Deporte, SpainGeneralitat de Cataluny

    From Image-level to Pixel-level Labeling with Convolutional Networks

    Get PDF
    We are interested in inferring object segmentation by leveraging only object class information, and by considering only minimal priors on the object segmentation task. This problem could be viewed as a kind of weakly supervised segmentation task, and naturally fits the Multiple Instance Learning (MIL) framework: every training image is known to have (or not) at least one pixel corresponding to the image class label, and the segmentation task can be rewritten as inferring the pixels belonging to the class of the object (given one image, and its object class). We propose a Convolutional Neural Network-based model, which is constrained during training to put more weight on pixels which are important for classifying the image. We show that at test time, the model has learned to discriminate the right pixels well enough, such that it performs very well on an existing segmentation benchmark, by adding only few smoothing priors. Our system is trained using a subset of the Imagenet dataset and the segmentation experiments are performed on the challenging Pascal VOC dataset (with no fine-tuning of the model on Pascal VOC). Our model beats the state of the art results in weakly supervised object segmentation task by a large margin. We also compare the performance of our model with state of the art fully-supervised segmentation approaches.Comment: CVPR201
    corecore