35,538 research outputs found

    Diffusion-Weighted Imaging: Recent Advances and Applications

    Get PDF
    Quantitative diffusion imaging techniques enable the characterization of tissue microstructural properties of the human brain “in vivo”, and are widely used in neuroscientific and clinical contexts. In this review, we present the basic physical principles behind diffusion imaging and provide an overview of the current diffusion techniques, including standard and advanced techniques as well as their main clinical applications. Standard diffusion tensor imaging (DTI) offers sensitivity to changes in microstructure due to diseases and enables the characterization of single fiber distributions within a voxel as well as diffusion anisotropy. Nonetheless, its inability to represent complex intravoxel fiber topologies and the limited biological specificity of its metrics motivated the development of several advanced diffusion MRI techniques. For example, high-angular resolution diffusion imaging (HARDI) techniques enabled the characterization of fiber crossing areas and other complex fiber topologies in a single voxel and supported the development of higher-order signal representations aiming to decompose the diffusion MRI signal into distinct microstructure compartments. Biophysical models, often known by their acronym (e.g., CHARMED, WMTI, NODDI, DBSI, DIAMOND) contributed to capture the diffusion properties from each of such tissue compartments, enabling the computation of voxel-wise maps of axonal density and/or morphology that hold promise as clinically viable biomarkers in several neurological and neuroscientific applications; for example, to quantify tissue alterations due to disease or healthy processes. Current challenges and limitations of state-of-the-art models are discussed, including validation efforts. Finally, novel diffusion encoding approaches (e.g., b-tensor or double diffusion encoding) may increase the biological specificity of diffusion metrics towards intra-voxel diffusion heterogeneity in clinical settings, holding promise in neurological applications

    Bayesian uncertainty quantification in linear models for diffusion MRI

    Full text link
    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.Comment: Added results from a group analysis and a comparison with residual bootstra

    MITK-ModelFit: A generic open-source framework for model fits and their exploration in medical imaging -- design, implementation and application on the example of DCE-MRI

    Full text link
    Many medical imaging techniques utilize fitting approaches for quantitative parameter estimation and analysis. Common examples are pharmacokinetic modeling in DCE MRI/CT, ADC calculations and IVIM modeling in diffusion-weighted MRI and Z-spectra analysis in chemical exchange saturation transfer MRI. Most available software tools are limited to a special purpose and do not allow for own developments and extensions. Furthermore, they are mostly designed as stand-alone solutions using external frameworks and thus cannot be easily incorporated natively in the analysis workflow. We present a framework for medical image fitting tasks that is included in MITK, following a rigorous open-source, well-integrated and operating system independent policy. Software engineering-wise, the local models, the fitting infrastructure and the results representation are abstracted and thus can be easily adapted to any model fitting task on image data, independent of image modality or model. Several ready-to-use libraries for model fitting and use-cases, including fit evaluation and visualization, were implemented. Their embedding into MITK allows for easy data loading, pre- and post-processing and thus a natural inclusion of model fitting into an overarching workflow. As an example, we present a comprehensive set of plug-ins for the analysis of DCE MRI data, which we validated on existing and novel digital phantoms, yielding competitive deviations between fit and ground truth. Providing a very flexible environment, our software mainly addresses developers of medical imaging software that includes model fitting algorithms and tools. Additionally, the framework is of high interest to users in the domain of perfusion MRI, as it offers feature-rich, freely available, validated tools to perform pharmacokinetic analysis on DCE MRI data, with both interactive and automatized batch processing workflows.Comment: 31 pages, 11 figures URL: http://mitk.org/wiki/MITK-ModelFi

    Data augmentation in Rician noise model and Bayesian Diffusion Tensor Imaging

    Full text link
    Mapping white matter tracts is an essential step towards understanding brain function. Diffusion Magnetic Resonance Imaging (dMRI) is the only noninvasive technique which can detect in vivo anisotropies in the 3-dimensional diffusion of water molecules, which correspond to nervous fibers in the living brain. In this process, spectral data from the displacement distribution of water molecules is collected by a magnetic resonance scanner. From the statistical point of view, inverting the Fourier transform from such sparse and noisy spectral measurements leads to a non-linear regression problem. Diffusion tensor imaging (DTI) is the simplest modeling approach postulating a Gaussian displacement distribution at each volume element (voxel). Typically the inference is based on a linearized log-normal regression model that can fit the spectral data at low frequencies. However such approximation fails to fit the high frequency measurements which contain information about the details of the displacement distribution but have a low signal to noise ratio. In this paper, we directly work with the Rice noise model and cover the full range of bb-values. Using data augmentation to represent the likelihood, we reduce the non-linear regression problem to the framework of generalized linear models. Then we construct a Bayesian hierarchical model in order to perform simultaneously estimation and regularization of the tensor field. Finally the Bayesian paradigm is implemented by using Markov chain Monte Carlo.Comment: 37 pages, 3 figure

    Spherical deconvolution of multichannel diffusion MRI data with non-Gaussian noise models and spatial regularization

    Get PDF
    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to Rician and noncentral Chi noise distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in brain data

    Axon diameters and myelin content modulate microscopic fractional anisotropy at short diffusion times in fixed rat spinal cord

    Full text link
    Mapping tissue microstructure accurately and noninvasively is one of the frontiers of biomedical imaging. Diffusion Magnetic Resonance Imaging (MRI) is at the forefront of such efforts, as it is capable of reporting on microscopic structures orders of magnitude smaller than the voxel size by probing restricted diffusion. Double Diffusion Encoding (DDE) and Double Oscillating Diffusion Encoding (DODE) in particular, are highly promising for their ability to report on microscopic fractional anisotropy ({\mu}FA), a measure of the pore anisotropy in its own eigenframe, irrespective of orientation distribution. However, the underlying correlates of {\mu}FA have insofar not been studied. Here, we extract {\mu}FA from DDE and DODE measurements at ultrahigh magnetic field of 16.4T in the aim to probe fixed rat spinal cord microstructure. We further endeavor to correlate {\mu}FA with Myelin Water Fraction (MWF) derived from multiexponential T2 relaxometry, as well as with literature-based spatially varying axonal diameters. In addition, a simple new method is presented for extracting unbiased {\mu}FA from three measurements at different b-values. Our findings reveal strong anticorrelations between {\mu}FA (derived from DODE) and axon diameter in the distinct spinal cord tracts; a moderate correlation was also observed between {\mu}FA derived from DODE and MWF. These findings suggest that axonal membranes strongly modulate {\mu}FA, which - owing to its robustness towards orientation dispersion effects - reflects axon diameter much better than its typical FA counterpart. The {\mu}FA exhibited modulations when measured via oscillating or blocked gradients, suggesting selective probing of different parallel path lengths and providing insight into how those modulate {\mu}FA metrics. Our findings thus shed light into the underlying microstructural correlates of {\mu}FA and are (...
    corecore