5 research outputs found

    The development of sub-25 nm III-V High Electron Mobility Transistors

    Get PDF
    High Electron Mobility Transistors (HEMTs) are crucially important devices in microwave circuit applications. As the technology has matured, new applications have arisen, particularly at millimetre-wave and sub-millimetre wave frequencies. There now exists great demand for low-visibility, security and medical imaging in addition to telecommunications applications operating at frequencies well above 100 GHz. These new applications have driven demand for high frequency, low noise device operation; key areas in which HEMTs excel. As a consequence, there is growing incentive to explore the ultimate performance available from such devices. As with all FETs, the key to HEMT performance optimisation is the reduction of gate length, whilst optimally scaling the rest of the device and minimising parasitic extrinsic influences on device performance. Although HEMTs have been under development for many years, key performance metrics have latterly slowed in their evolution, largely due to the difficulty of fabricating devices at increasingly nanometric gate lengths and maintaining satisfactory scaling and device performance. At Glasgow, the world-leading 50 nm HEMT process developed in 2003 had not since been improved in the intervening five years. This work describes the fabrication of sub-25 nm HEMTs in a robust and repeatable manner by the use of advanced processing techniques: in particular, electron beam lithography and reactive ion etching. This thesis describes firstly the development of robust gate lithography for sub-25 nm patterning, and its incorporation into a complete device process flow. Secondly, processes and techniques for the optimisation of the complete device are described. This work has led to the successful fabrication of functional 22 nm HEMTs and the development of 10 nm scale gate pattern transfer: simultaneously some of the shortest gate length devices reported and amongst the smallest scale structures ever lithographically defined on III-V substrates. The first successful fabrication of implant-isolated planar high-indium HEMTs is also reported amongst other novel secondary processes

    Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    Get PDF
    We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.Peer ReviewedPostprint (published version

    INTER-ENG 2020

    Get PDF
    These proceedings contain research papers that were accepted for presentation at the 14th International Conference Inter-Eng 2020 ,Interdisciplinarity in Engineering, which was held on 8–9 October 2020, in Târgu Mureș, Romania. It is a leading international professional and scientific forum for engineers and scientists to present research works, contributions, and recent developments, as well as current practices in engineering, which is falling into a tradition of important scientific events occurring at Faculty of Engineering and Information Technology in the George Emil Palade University of Medicine, Pharmacy Science, and Technology of Târgu Mures, Romania. The Inter-Eng conference started from the observation that in the 21st century, the era of high technology, without new approaches in research, we cannot speak of a harmonious society. The theme of the conference, proposing a new approach related to Industry 4.0, was the development of a new generation of smart factories based on the manufacturing and assembly process digitalization, related to advanced manufacturing technology, lean manufacturing, sustainable manufacturing, additive manufacturing, and manufacturing tools and equipment. The conference slogan was “Europe’s future is digital: a broad vision of the Industry 4.0 concept beyond direct manufacturing in the company”
    corecore