191 research outputs found

    Generic Pipelined Processor Modeling and High Performance Cycle-Accurate Simulator Generation

    Full text link
    Detailed modeling of processors and high performance cycle-accurate simulators are essential for today's hardware and software design. These problems are challenging enough by themselves and have seen many previous research efforts. Addressing both simultaneously is even more challenging, with many existing approaches focusing on one over another. In this paper, we propose the Reduced Colored Petri Net (RCPN) model that has two advantages: first, it offers a very simple and intuitive way of modeling pipelined processors; second, it can generate high performance cycle-accurate simulators. RCPN benefits from all the useful features of Colored Petri Nets without suffering from their exponential growth in complexity. RCPN processor models are very intuitive since they are a mirror image of the processor pipeline block diagram. Furthermore, in our experiments on the generated cycle-accurate simulators for XScale and StrongArm processor models, we achieved an order of magnitude (~15 times) speedup over the popular SimpleScalar ARM simulator.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Formal Architecture Specification for Time Analysis

    Get PDF
    International audienceWCET calculus is nowadays a must for safety critical systems. As a matter of fact, basic real-time properties rely on accurate timings. Although over the last years, substantial progress has been made in order to get a more precise WCET, we believe that the design of the underlying frameworks deserve more attention. In this paper, we are concerned mainly with two aspects which deal with the modularity of these frameworks. First, we enhance the existing language Sim-nML for describing processors at the instruction level in order to capture modern architecture aspects. Second, we propose a light DSL in order to describe, in a formal prose, architectural aspects related to both the structural aspects as well as to the behavioral aspects

    An Architecture Description Language for Embedded Hardware Platforms

    Get PDF
    Embedded software development relies on various tools - compilers, simulators, execution time estimators - that encapsulate a more-or-less detailed knowledge of the target hardware platform. These tools can be costly to develop and maintain:significant benefits could be expected if they were automatically generated from models expressed in a dedicated modeling language.In contrast with Hardware Description Languages (HDLs), that focus on the internal structure and behavior of an electronic board of chip, Hardware Architecture Description Languages consider hardware as a platform for software execution. Such a platform will be described in terms of low-level programming interface (processor instruction set),resources (processing elements, memory and peripheral devices) and elementary services (arithmetic and logic operations, bus transactions).This paper gives an overview of HARMLESS (Hardware ARchitecture Modeling Language for Embedded Software Simulation), a new domain-specific language for modeling embedded hardware platforms. HARMLESS and its associated tools follow the Model-Driven Engineering philosophy: metamodeling and model transformations have been successfully applied to the automatic generation of processor simulators

    An Architecture Description Language for Embedded Hardware Platforms

    Get PDF
    Embedded software development relies on various tools - compilers, simulators, execution time estimators - that encapsulate a more-or-less detailed knowledge of the target hardware platform. These tools can be costly to develop and maintain:significant benefits could be expected if they were automatically generated from models expressed in a dedicated modeling language.In contrast with Hardware Description Languages (HDLs), that focus on the internal structure and behavior of an electronic board of chip, Hardware Architecture Description Languages consider hardware as a platform for software execution. Such a platform will be described in terms of low-level programming interface (processor instruction set),resources (processing elements, memory and peripheral devices) and elementary services (arithmetic and logic operations, bus transactions).This paper gives an overview of HARMLESS (Hardware ARchitecture Modeling Language for Embedded Software Simulation), a new domain-specific language for modeling embedded hardware platforms. HARMLESS and its associated tools follow the Model-Driven Engineering philosophy: metamodeling and model transformations have been successfully applied to the automatic generation of processor simulators

    Harmless, a Hardware Architecture Description Language Dedicated to Real-Time Embedded System Simulation

    Get PDF
    International audienceValidation and Verification of embedded systems through simulation can be conducted at many levels, from the simulation of a high-level application model to the simulation of the actual binary code using an accurate model of the processor. However, for real-time applications, the simulated execution time must be as close as possible to the execution time on the actual platform and in this case the latter gives the closest results. The main drawback of the simulation of application's software using an accurate model of the processor resides in the development of a handwritten simulator which is a difficult and tedious task. This paper presents Harmless, a hardware Architecture Description Language (ADL) that mainly targets real-time embedded systems. Harmless is dedicated to the generation of simulator of the hardware platform to develop and test real-time embedded applications. Compared to existing ADLs, Harmless1) offers a more flexible description of the Instruction Set Architecture (ISA) 2) allows to describe the microarchitecture independently of the ISA to ease its reuse and 3) compares favorably to simulators generated by the existing ADLs toolsets

    A proposed synthesis method for Application-Specific Instruction Set Processors

    Get PDF
    Due to the rapid technology advancement in integrated circuit era, the need for the high computation performance together with increasing complexity and manufacturing costs has raised the demand for high-performance con fi gurable designs; therefore, the Application-Speci fi c Instruction Set Processors (ASIPs) are widely used in SoC design. The automated generation of software tools for ASIPs is a commonly used technique, but the automated hardware model generation is less frequently applied in terms of fi nal RTL implementations. Contrary to this, the fi nal register-transfer level models are usually created, at least partly, manually. This paper presents a novel approach for automated hardware model generation for ASIPs. The new solution is based on a novel abstract ASIP model and a modeling language (Algorithmic Microarchitecture Description Language, AMDL) optimized for this architecture model. The proposed AMDL-based pre-synthesis method is based on a set of pre-de fi ned VHDL implementation schemes, which ensure the qualities of the automatically generated register-transfer level models in terms of resource requirement and operation frequency. The design framework implementing the algorithms required by the synthesis method is also presented

    Computing with Spintronics: Circuits and architectures

    Get PDF
    This thesis makes the following contributions towards the design of computing platforms with spintronic devices. 1) It explores the use of spintronic memories in the design of a domain-specific processor for an emerging class of data-intensive applications, namely recognition, mining and synthesis (RMS). Two different spintronic memory technologies — Domain Wall Memory (DWM) and STT-MRAM — are utilized to realize the different levels in the memory hierarchy of the domain-specific processor, based on their respective access characteristics. Architectural tradeoffs created by the use of spintronic memories are analyzed. The proposed design achieves 1.5X-4X improvements in energy-delay product compared to a CMOS baseline. 2) It describes the first attempt to use DWM in the cache hierarchy of general-purpose processors. DWM promises unparalleled density by packing several bits of data into each bit-cell. TapeCache, the proposed DWM-based cache architecture, utilizes suitable circuit and architectural optimizations to address two key challenges (i) the high energy and latency requirement of write operations and (ii) the need for shift operations to access the data stored in each DWM bit-cell. At the circuit level, DWM bit-cells that are tailored to the distinct design requirements of different levels in the cache hierarchy are proposed. At the architecture level, TapeCache proposes suitable cache organization and management policies to alleviate the performance impact of shift operations required to access data stored in DWM bit-cells. TapeCache achieves more than 7X improvements in both cache area and energy with virtually identical performance compared to an SRAM-based cache hierarchy. 3) It investigates the design of the on-chip memory hierarchy of general-purpose graphics processing units (GPGPUs)—massively parallel processors that are optimized for data-intensive high-throughput workloads—using DWM. STAG, a high density, energy-efficient Spintronic- Tape Architecture for GPGPU cache hierarchies is described. STAG utilizes different DWM bit-cells to realize different memory arrays in the GPGPU cache hierarchy. To address the challenge of high access latencies due to shifts, STAG predicts upcoming cache accesses by leveraging unique characteristics of GPGPU architectures and workloads, and prefetches data that are both likely to be accessed and require large numbers of shift operations. STAG achieves 3.3X energy reduction and 12.1% performance improvement over CMOS SRAM under iso-area conditions. 4) While the potential of spintronic devices for memories is widely recognized, their utility in realizing logic is much less clear. The thesis presents Spintastic, a new paradigm that utilizes Stochastic Computing (SC) to realize spintronic logic. In SC, data is encoded in the form of pseudo-random bitstreams, such that the probability of a \u271\u27 in a bitstream corresponds to the numerical value that it represents. SC can enable compact, low-complexity logic implementations of various arithmetic functions. Spintastic establishes the synergy between stochastic computing and spin-based logic by demonstrating that they mutually alleviate each other\u27s limitations. On the one hand, various building blocks of SC, which incur significant overheads in CMOS implementations, can be efficiently realized by exploiting the physical characteristics of spin devices. On the other hand, the reduced logic complexity and low logic depth of SC circuits alleviates the shortcomings of spintronic logic. Based on this insight, the design of spin-based stochastic arithmetic circuits, bitstream generators, bitstream permuters and stochastic-to-binary converter circuits are presented. Spintastic achieves 7.1X energy reduction over CMOS implementations for a wide range of benchmarks from the image processing, signal processing, and RMS application domains. 5) In order to evaluate the proposed spintronic designs, the thesis describes various device-to-architecture modeling frameworks. Starting with devices models that are calibrated to measurements, the characteristics of spintronic devices are successively abstracted into circuit-level and architectural models, which are incorporated into suitable simulation frameworks. (Abstract shortened by UMI.

    A framework for automated and optimized ASIP implementation supporting multiple hardware description languages

    Full text link
    • …
    corecore