280,307 research outputs found

    Asynchronous Execution of Python Code on Task Based Runtime Systems

    Get PDF
    Despite advancements in the areas of parallel and distributed computing, the complexity of programming on High Performance Computing (HPC) resources has deterred many domain experts, especially in the areas of machine learning and artificial intelligence (AI), from utilizing performance benefits of such systems. Researchers and scientists favor high-productivity languages to avoid the inconvenience of programming in low-level languages and costs of acquiring the necessary skills required for programming at this level. In recent years, Python, with the support of linear algebra libraries like NumPy, has gained popularity despite facing limitations which prevent this code from distributed runs. Here we present a solution which maintains both high level programming abstractions as well as parallel and distributed efficiency. Phylanx, is an asynchronous array processing toolkit which transforms Python and NumPy operations into code which can be executed in parallel on HPC resources by mapping Python and NumPy functions and variables into a dependency tree executed by HPX, a general purpose, parallel, task-based runtime system written in C++. Phylanx additionally provides introspection and visualization capabilities for debugging and performance analysis. We have tested the foundations of our approach by comparing our implementation of widely used machine learning algorithms to accepted NumPy standards

    Potential of the Julia programming language for high energy physics computing

    Full text link
    Research in high energy physics (HEP) requires huge amounts of computing and storage, putting strong constraints on the code speed and resource usage. To meet these requirements, a compiled high-performance language is typically used; while for physicists, who focus on the application when developing the code, better research productivity pleads for a high-level programming language. A popular approach consists of combining Python, used for the high-level interface, and C++, used for the computing intensive part of the code. A more convenient and efficient approach would be to use a language that provides both high-level programming and high-performance. The Julia programming language, developed at MIT especially to allow the use of a single language in research activities, has followed this path. In this paper the applicability of using the Julia language for HEP research is explored, covering the different aspects that are important for HEP code development: runtime performance, handling of large projects, interface with legacy code, distributed computing, training, and ease of programming. The study shows that the HEP community would benefit from a large scale adoption of this programming language. The HEP-specific foundation libraries that would need to be consolidated are identifiedComment: 32 pages, 5 figures, 4 table

    Scalable Distributed Computing Hierarchy: Cloud, Fog and Dew Computing

    Get PDF
    The paper considers the conceptual approach for organization of the vertical hierarchical links between the scalable distributed computing paradigms: Cloud Computing, Fog Computing and Dew Computing. In this paper, the Dew Computing is described and recognized as a new structural layer in the existing distributed computing hierarchy. In the existing computing hierarchy, the Dew computing is positioned as the ground level for the Cloud and Fog computing paradigms. Vertical, complementary, hierarchical division from Cloud to Dew Computing satisfies the needs of high- and low-end computing demands in everyday life and work. These new computing paradigms lower the cost and improve the performance, particularly for concepts and applications such as the Internet of Things (IoT) and the Internet of Everything (IoE). In addition, the Dew computing paradigm will require new programming models that will efficiently reduce the complexity and improve the productivity and usability of scalable distributed computing, following the principles of High-Productivity computing

    Parallel Computing in Java

    Get PDF
    The Java programming language and environment is inspiring new research activities in many areas of computing, of which parallel computing is one of the major interests. Parallel techniques are themselves finding new uses in cluster computing systems. Although there are excellent software tools for scheduling, monitoring and message-based programming on parallel clusters, these systems are not yet well integrated and do not provide very high-level parallel programming support. This research presents a number of issues which are considered to be key to the suitability of Java for HPC (High Performance Computing) applications and then explore the support for concurrency in the current Java 1.8 specification. We further present various relatively recent parallel Java models which support HPC for both shared and distributed memory programming paradigms. Finally, we attempt to evaluate the performance of discussed Java HPC models by comparing the same with the relative traditional native C implementations, where appropriate. The analysis of the results suggest that Java can achieve near similar performance to natively compiled languages, both for sequential and parallel applications, thus making it a viable alternative for HPC programming

    DART-MPI: An MPI-based Implementation of a PGAS Runtime System

    Full text link
    A Partitioned Global Address Space (PGAS) approach treats a distributed system as if the memory were shared on a global level. Given such a global view on memory, the user may program applications very much like shared memory systems. This greatly simplifies the tasks of developing parallel applications, because no explicit communication has to be specified in the program for data exchange between different computing nodes. In this paper we present DART, a runtime environment, which implements the PGAS paradigm on large-scale high-performance computing clusters. A specific feature of our implementation is the use of one-sided communication of the Message Passing Interface (MPI) version 3 (i.e. MPI-3) as the underlying communication substrate. We evaluated the performance of the implementation with several low-level kernels in order to determine overheads and limitations in comparison to the underlying MPI-3.Comment: 11 pages, International Conference on Partitioned Global Address Space Programming Models (PGAS14

    Parallel Programming with Global Asynchronous Memory: Models, C++ APIs and Implementations

    Get PDF
    In the realm of High Performance Computing (HPC), message passing has been the programming paradigm of choice for over twenty years. The durable MPI (Message Passing Interface) standard, with send/receive communication, broadcast, gather/scatter, and reduction collectives is still used to construct parallel programs where each communication is orchestrated by the developer-based precise knowledge of data distribution and overheads; collective communications simplify the orchestration but might induce excessive synchronization. Early attempts to bring shared-memory programming model—with its programming advantages—to distributed computing, referred as the Distributed Shared Memory (DSM) model, faded away; one of the main issue was to combine performance and programmability with the memory consistency model. The recently proposed Partitioned Global Address Space (PGAS) model is a modern revamp of DSM that exposes data placement to enable optimizations based on locality, but it still addresses (simple) data- parallelism only and it relies on expensive sharing protocols. We advocate an alternative programming model for distributed computing based on a Global Asynchronous Memory (GAM), aiming to avoid coherency and consistency problems rather than solving them. We materialize GAM by designing and implementing a distributed smart pointers library, inspired by C++ smart pointers. In this model, public and pri- vate pointers (resembling C++ shared and unique pointers, respectively) are moved around instead of messages (i.e., data), thus alleviating the user from the burden of minimizing transfers. On top of smart pointers, we propose a high-level C++ template library for writing applications in terms of dataflow-like networks, namely GAM nets, consisting of stateful processors exchanging pointers in fully asynchronous fashion. We demonstrate the validity of the proposed approach, from the expressiveness perspective, by showing how GAM nets can be exploited to implement both standalone applications and higher-level parallel program- ming models, such as data and task parallelism. As for the performance perspective, preliminary experiments show both close-to-ideal scalability and negligible overhead with respect to state-of-the-art benchmark implementations. For instance, the GAM implementation of a high-quality video restoration filter sustains a 100 fps throughput over 70%-noisy high-quality video streams on a 4-node cluster of Graphics Processing Units (GPUs), with minimal programming effort

    Functional programming abstractions for weakly consistent systems

    Get PDF
    In recent years, there has been a wide-spread adoption of both multicore and cloud computing. Traditionally, concurrent programmers have relied on the underlying system providing strong memory consistency, where there is a semblance of concurrent tasks operating over a shared global address space. However, providing scalable strong consistency guarantees as the scale of the system grows is an increasingly difficult endeavor. In a multicore setting, the increasing complexity and the lack of scalability of hardware mechanisms such as cache coherence deters scalable strong consistency. In geo-distributed compute clouds, the availability concerns in the presence of partial failures prohibit strong consistency. Hence, modern multicore and cloud computing platforms eschew strong consistency in favor of weakly consistent memory, where each task\u27s memory view is incomparable with the other tasks. As a result, programmers on these platforms must tackle the full complexity of concurrent programming for an asynchronous distributed system. ^ This dissertation argues that functional programming language abstractions can simplify scalable concurrent programming for weakly consistent systems. Functional programming espouses mutation-free programming, and rare mutations when present are explicit in their types. By controlling and explicitly reasoning about shared state mutations, functional abstractions simplify concurrent programming. Building upon this intuition, this dissertation presents three major contributions, each focused on addressing a particular challenge associated with weakly consistent loosely coupled systems. First, it describes A NERIS, a concurrent functional programming language and runtime for the Intel Single-chip Cloud Computer, and shows how to provide an efficient cache coherent virtual address space on top of a non cache coherent multicore architecture. Next, it describes RxCML, a distributed extension of MULTIMLTON and shows that, with the help of speculative execution, synchronous communication can be utilized as an efficient abstraction for programming asynchronous distributed systems. Finally, it presents QUELEA, a programming system for eventually consistent distributed stores, and shows that the choice of correct consistency level for replicated data type operations and transactions can be automated with the help of high-level declarative contracts
    • …
    corecore