962 research outputs found

    Smart Grid Security: Threats, Challenges, and Solutions

    Get PDF
    The cyber-physical nature of the smart grid has rendered it vulnerable to a multitude of attacks that can occur at its communication, networking, and physical entry points. Such cyber-physical attacks can have detrimental effects on the operation of the grid as exemplified by the recent attack which caused a blackout of the Ukranian power grid. Thus, to properly secure the smart grid, it is of utmost importance to: a) understand its underlying vulnerabilities and associated threats, b) quantify their effects, and c) devise appropriate security solutions. In this paper, the key threats targeting the smart grid are first exposed while assessing their effects on the operation and stability of the grid. Then, the challenges involved in understanding these attacks and devising defense strategies against them are identified. Potential solution approaches that can help mitigate these threats are then discussed. Last, a number of mathematical tools that can help in analyzing and implementing security solutions are introduced. As such, this paper will provide the first comprehensive overview on smart grid security

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl

    Detection of False Data Injection Attacks in Smart-Grid Systems

    No full text

    Towards a secure network architecture for smart grids in 5G era

    Get PDF
    Smart grid introduces a wealth of promising applications for upcoming fifth-generation mobile networks (5G), enabling households and utility companies to establish a two-way digital communications dialogue, which can benefit both of them. The utility can monitor real-time consumption of end users and take proper measures (e.g., real-time pricing) to shape their consumption profile or to plan enough supply to meet the foreseen demand. On the other hand, a smart home can receive real-time electricity prices and adjust its consumption to minimize its daily electricity expenditure, while meeting the energy need and the satisfaction level of the dwellers. Smart Home applications for smart phones are also a promising use case, where users can remotely control their appliances, while they are away at work or on their ways home. Although these emerging services can evidently boost the efficiency of the market and the satisfaction of the consumers, they may also introduce new attack surfaces making the grid vulnerable to financial losses or even physical damages. In this paper, we propose an architecture to secure smart grid communications incorporating an intrusion detection system, composed of distributed components collaborating with each other to detect price integrity or load alteration attacks in different segments of an advanced metering infrastructure
    • …
    corecore