609 research outputs found

    A Human-Centric Metaverse Enabled by Brain-Computer Interface: A Survey

    Full text link
    The growing interest in the Metaverse has generated momentum for members of academia and industry to innovate toward realizing the Metaverse world. The Metaverse is a unique, continuous, and shared virtual world where humans embody a digital form within an online platform. Through a digital avatar, Metaverse users should have a perceptual presence within the environment and can interact and control the virtual world around them. Thus, a human-centric design is a crucial element of the Metaverse. The human users are not only the central entity but also the source of multi-sensory data that can be used to enrich the Metaverse ecosystem. In this survey, we study the potential applications of Brain-Computer Interface (BCI) technologies that can enhance the experience of Metaverse users. By directly communicating with the human brain, the most complex organ in the human body, BCI technologies hold the potential for the most intuitive human-machine system operating at the speed of thought. BCI technologies can enable various innovative applications for the Metaverse through this neural pathway, such as user cognitive state monitoring, digital avatar control, virtual interactions, and imagined speech communications. This survey first outlines the fundamental background of the Metaverse and BCI technologies. We then discuss the current challenges of the Metaverse that can potentially be addressed by BCI, such as motion sickness when users experience virtual environments or the negative emotional states of users in immersive virtual applications. After that, we propose and discuss a new research direction called Human Digital Twin, in which digital twins can create an intelligent and interactable avatar from the user's brain signals. We also present the challenges and potential solutions in synchronizing and communicating between virtual and physical entities in the Metaverse

    Learning to compress and search visual data in large-scale systems

    Full text link
    The problem of high-dimensional and large-scale representation of visual data is addressed from an unsupervised learning perspective. The emphasis is put on discrete representations, where the description length can be measured in bits and hence the model capacity can be controlled. The algorithmic infrastructure is developed based on the synthesis and analysis prior models whose rate-distortion properties, as well as capacity vs. sample complexity trade-offs are carefully optimized. These models are then extended to multi-layers, namely the RRQ and the ML-STC frameworks, where the latter is further evolved as a powerful deep neural network architecture with fast and sample-efficient training and discrete representations. For the developed algorithms, three important applications are developed. First, the problem of large-scale similarity search in retrieval systems is addressed, where a double-stage solution is proposed leading to faster query times and shorter database storage. Second, the problem of learned image compression is targeted, where the proposed models can capture more redundancies from the training images than the conventional compression codecs. Finally, the proposed algorithms are used to solve ill-posed inverse problems. In particular, the problems of image denoising and compressive sensing are addressed with promising results.Comment: PhD thesis dissertatio

    Learning from limited labeled data - Zero-Shot and Few-Shot Learning

    Get PDF
    Human beings have the remarkable ability to recognize novel visual concepts after observing only few or zero examples of them. Deep learning, however, often requires a large amount of labeled data to achieve a good performance. Labeled instances are expensive, difficult and even infeasible to obtain because the distribution of training instances among labels naturally exhibits a long tail. Therefore, it is of great interest to investigate how to learn efficiently from limited labeled data. This thesis concerns an important subfield of learning from limited labeled data, namely, low-shot learning. The setting assumes the availability of many labeled examples from known classes and the goal is to learn novel classes from only a few~(few-shot learning) or zero~(zero-shot learning) training examples of them. To this end, we have developed a series of multi-modal learning approaches to facilitate the knowledge transfer from known classes to novel classes for a wide range of visual recognition tasks including image classification, semantic image segmentation and video action recognition. More specifically, this thesis mainly makes the following contributions. First, as there is no agreed upon zero-shot image classification benchmark, we define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets. Second, in order to tackle the labeled data scarcity, we propose feature generation frameworks that synthesize data in the visual feature space for novel classes. Third, we extend zero-shot learning and few-shot learning to the semantic segmentation task and propose a challenging benchmark for it. We show that incorporating semantic information into a semantic segmentation network is effective in segmenting novel classes. Finally, we develop better video representation for the few-shot video classification task and leverage weakly-labeled videos by an efficient retrieval method.Menschen haben die bemerkenswerte Fähigkeit, neuartige visuelle Konzepte zu erkennen, nachdem sie nur wenige oder gar keine Beispiele davon beobachtet haben. Tiefes Lernen erfordert jedoch oft eine große Menge an beschrifteten Daten, um eine gute Leistung zu erzielen. Etikettierte Instanzen sind teuer, schwierig und sogar undurchführbar, weil die Verteilung der Trainingsinstanzen auf die Etiketten naturgemäß einen langen Schwanz aufweist. Daher ist es von großem Interesse zu untersuchen, wie man effizient aus begrenzten gelabelten Daten lernen kann. Diese These betrifft einen wichtigen Teilbereich des Lernens aus begrenzt gelabelten Daten, nämlich das Low-Shot-Lernen. Das Setting setzt die Verfügbarkeit vieler gelabelter Beispiele aus bekannten Klassen voraus, und das Ziel ist es, neuartige Klassen aus nur wenigen (few-shot learning) oder null (zero-shot learning) Trainingsbeispielen davon zu lernen. Zu diesem Zweck haben wir eine Reihe von multimodalen Lernansätzen entwickelt, um den Wissenstransfer von bekannten Klassen zu neuartigen Klassen für ein breites Spektrum von visuellen Erkennungsaufgaben zu erleichtern, darunter Bildklassifizierung, semantische Bildsegmentierung und Videoaktionserkennung. Genauer gesagt, leistet diese Arbeit hauptsächlich die folgenden Beiträge. Da es keinen vereinbarten Benchmark für die Zero-Shot- Bildklassifikation gibt, definieren wir zunächst einen neuen Benchmark, indem wir sowohl die Evaluierungsprotokolle als auch die Datensplits öffentlich zugänglicher Datensätze vereinheitlichen. Zweitens schlagen wir zur Bewältigung der etikettierten Datenknappheit einen Rahmen für die Generierung von Merkmalen vor, der Daten im visuellen Merkmalsraum für neuartige Klassen synthetisiert. Drittens dehnen wir das Zero-Shot-Lernen und das few-Shot-Lernen auf die semantische Segmentierungsaufgabe aus und schlagen dafür einen anspruchsvollen Benchmark vor. Wir zeigen, dass die Einbindung semantischer Informationen in ein semantisches Segmentierungsnetz bei der Segmentierung neuartiger Klassen effektiv ist. Schließlich entwickeln wir eine bessere Videodarstellung für die Klassifizierungsaufgabe ”few-shot video” und nutzen schwach markierte Videos durch eine effiziente Abrufmethode.Max Planck Institute Informatic

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    3D Face Modelling, Analysis and Synthesis

    Get PDF
    Human faces have always been of a special interest to researchers in the computer vision and graphics areas. There has been an explosion in the number of studies around accurately modelling, analysing and synthesising realistic faces for various applications. The importance of human faces emerges from the fact that they are invaluable means of effective communication, recognition, behaviour analysis, conveying emotions, etc. Therefore, addressing the automatic visual perception of human faces efficiently could open up many influential applications in various domains, e.g. virtual/augmented reality, computer-aided surgeries, security and surveillance, entertainment, and many more. However, the vast variability associated with the geometry and appearance of human faces captured in unconstrained videos and images renders their automatic analysis and understanding very challenging even today. The primary objective of this thesis is to develop novel methodologies of 3D computer vision for human faces that go beyond the state of the art and achieve unprecedented quality and robustness. In more detail, this thesis advances the state of the art in 3D facial shape reconstruction and tracking, fine-grained 3D facial motion estimation, expression recognition and facial synthesis with the aid of 3D face modelling. We give a special attention to the case where the input comes from monocular imagery data captured under uncontrolled settings, a.k.a. \textit{in-the-wild} data. This kind of data are available in abundance nowadays on the internet. Analysing these data pushes the boundaries of currently available computer vision algorithms and opens up many new crucial applications in the industry. We define the four targeted vision problems (3D facial reconstruction &\& tracking, fine-grained 3D facial motion estimation, expression recognition, facial synthesis) in this thesis as the four 3D-based essential systems for the automatic facial behaviour understanding and show how they rely on each other. Finally, to aid the research conducted in this thesis, we collect and annotate a large-scale videos dataset of monocular facial performances. All of our proposed methods demonstarte very promising quantitative and qualitative results when compared to the state-of-the-art methods

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Applications of Virtual Reality

    Get PDF
    Information Technology is growing rapidly. With the birth of high-resolution graphics, high-speed computing and user interaction devices Virtual Reality has emerged as a major new technology in the mid 90es, last century. Virtual Reality technology is currently used in a broad range of applications. The best known are games, movies, simulations, therapy. From a manufacturing standpoint, there are some attractive applications including training, education, collaborative work and learning. This book provides an up-to-date discussion of the current research in Virtual Reality and its applications. It describes the current Virtual Reality state-of-the-art and points out many areas where there is still work to be done. We have chosen certain areas to cover in this book, which we believe will have potential significant impact on Virtual Reality and its applications. This book provides a definitive resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF
    • …
    corecore