20,858 research outputs found

    High Dynamic Range Adaptive Real-time Smart Camera: an overview of the HDR-ARTiST project

    No full text
    International audienceStandard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor

    High dynamic range imaging for archaeological recording

    No full text
    This paper notes the adoption of digital photography as a primary recording means within archaeology, and reviews some issues and problems that this presents. Particular attention is given to the problems of recording high-contrast scenes in archaeology and High Dynamic Range imaging using multiple exposures is suggested as a means of providing an archive of high-contrast scenes that can later be tone-mapped to provide a variety of visualisations. Exposure fusion is also considered, although it is noted that this has some disadvantages. Three case studies are then presented (1) a very high contrast photograph taken from within a rock-cut tomb at Cala Morell, Menorca (2) an archaeological test pitting exercise requiring rapid acquisition of photographic records in challenging circumstances and (3) legacy material consisting of three differently exposed colour positive (slide) photographs of the same scene. In each case, HDR methods are shown to significantly aid the generation of a high quality illustrative record photograph, and it is concluded that HDR imaging could serve an effective role in archaeological photographic recording, although there remain problems of archiving and distributing HDR radiance map data
    • …
    corecore