1,366 research outputs found

    High Dimensional Expanders and Property Testing

    Full text link
    We show that the high dimensional expansion property as defined by Gromov, Linial and Meshulam, for simplicial complexes is a form of testability. Namely, a simplicial complex is a high dimensional expander iff a suitable property is testable. Using this connection, we derive several testability results

    Ramanujan Complexes and bounded degree topological expanders

    Full text link
    Expander graphs have been a focus of attention in computer science in the last four decades. In recent years a high dimensional theory of expanders is emerging. There are several possible generalizations of the theory of expansion to simplicial complexes, among them stand out coboundary expansion and topological expanders. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, formulated by Gromov, is whether bounded degree high dimensional expanders, according to these definitions, exist for d >= 2. We present an explicit construction of bounded degree complexes of dimension d = 2 which are high dimensional expanders. More precisely, our main result says that the 2-skeletons of the 3-dimensional Ramanujan complexes are topological expanders. Assuming a conjecture of Serre on the congruence subgroup property, infinitely many of them are also coboundary expanders.Comment: To appear in FOCS 201

    Testing Odd Direct Sums Using High Dimensional Expanders

    Get PDF
    In this work, using methods from high dimensional expansion, we show that the property of k-direct-sum is testable for odd values of k . Previous work of [Kaufman and Lubotzky, 2014] could inherently deal only with the case that k is even, using a reduction to linearity testing. Interestingly, our work is the first to combine the topological notion of high dimensional expansion (called co-systolic expansion) with the combinatorial/spectral notion of high dimensional expansion (called colorful expansion) to obtain the result. The classical k-direct-sum problem applies to the complete complex; Namely it considers a function defined over all k-subsets of some n sized universe. Our result here applies to any collection of k-subsets of an n-universe, assuming this collection of subsets forms a high dimensional expander

    Local tests of global entanglement and a counterexample to the generalized area law

    Get PDF
    We introduce a technique for applying quantum expanders in a distributed fashion, and use it to solve two basic questions: testing whether a bipartite quantum state shared by two parties is the maximally entangled state and disproving a generalized area law. In the process these two questions which appear completely unrelated turn out to be two sides of the same coin. Strikingly in both cases a constant amount of resources are used to verify a global property.Comment: 21 pages, to appear FOCS 201

    High Dimensional Random Walks and Colorful Expansion

    Get PDF
    Random walks on bounded degree expander graphs have numerous applications, both in theoretical and practical computational problems. A key property of these walks is that they converge rapidly to their stationary distribution. In this work we {\em define high order random walks}: These are generalizations of random walks on graphs to high dimensional simplicial complexes, which are the high dimensional analogues of graphs. A simplicial complex of dimension dd has vertices, edges, triangles, pyramids, up to dd-dimensional cells. For any 0≤i<d0 \leq i < d, a high order random walk on dimension ii moves between neighboring ii-faces (e.g., edges) of the complex, where two ii-faces are considered neighbors if they share a common (i+1)(i+1)-face (e.g., a triangle). The case of i=0i=0 recovers the well studied random walk on graphs. We provide a {\em local-to-global criterion} on a complex which implies {\em rapid convergence of all high order random walks} on it. Specifically, we prove that if the 11-dimensional skeletons of all the links of a complex are spectral expanders, then for {\em all} 0≤i<d0 \le i < d the high order random walk on dimension ii converges rapidly to its stationary distribution. We derive our result through a new notion of high dimensional combinatorial expansion of complexes which we term {\em colorful expansion}. This notion is a natural generalization of combinatorial expansion of graphs and is strongly related to the convergence rate of the high order random walks. We further show an explicit family of {\em bounded degree} complexes which satisfy this criterion. Specifically, we show that Ramanujan complexes meet this criterion, and thus form an explicit family of bounded degree high dimensional simplicial complexes in which all of the high order random walks converge rapidly to their stationary distribution.Comment: 27 page

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Quantum Locally Testable Codes

    Full text link
    We initiate the study of quantum Locally Testable Codes (qLTCs). We provide a definition together with a simplification, denoted sLTCs, for the special case of stabilizer codes, together with some basic results using those definitions. The most crucial parameter of such codes is their soundness, R(δ)R(\delta), namely, the probability that a randomly chosen constraint is violated as a function of the distance of a word from the code (δ\delta, the relative distance from the code, is called the proximity). We then proceed to study limitations on qLTCs. In our first main result we prove a surprising, inherently quantum, property of sLTCs: for small values of proximity, the better the small-set expansion of the interaction graph of the constraints, the less sound the qLTC becomes. This phenomenon, which can be attributed to monogamy of entanglement, stands in sharp contrast to the classical setting. The complementary, more intuitive, result also holds: an upper bound on the soundness when the code is defined on poor small-set expanders (a bound which turns out to be far more difficult to show in the quantum case). Together we arrive at a quantum upper-bound on the soundness of stabilizer qLTCs set on any graph, which does not hold in the classical case. Many open questions are raised regarding what possible parameters are achievable for qLTCs. In the appendix we also define a quantum analogue of PCPs of proximity (PCPPs) and point out that the result of Ben-Sasson et. al. by which PCPPs imply LTCs with related parameters, carries over to the sLTCs. This creates a first link between qLTCs and quantum PCPs.Comment: Some of the results presented here appeared in an initial form in our quant-ph submission arXiv:1301.3407. This is a much extended and improved version. 30 pages, no figure
    • …
    corecore