9,243 research outputs found

    3D Data Storage

    Get PDF
    This paper discusses holographic data storage as an option for high-density data storage. It describes the technology and its benefits

    Optimal read/write memory system components

    Get PDF
    Two holographic data storage and display systems, voltage gradient ionization system, and linear strain manipulation system are discussed in terms of creating fast, high bit density, storage device. Components described include: novel mounting fixture for photoplastic arrays; corona discharge device; and block data composer

    Storage Density of Shift-Multiplexed Holographic Memory

    Get PDF
    The storage density of shift-multiplexed holographic memory is calculated and compared with experimentally achieved densities by use of photorefractive and write-once materials. We consider holographic selectivity as well as the recording material s dynamic range (M /#) and required diffraction efficiencies in formulating the calculations of storage densities, thereby taking into account all major factors limiting the raw storage density achievable with shift-multiplexed holographic storage systems. We show that the M /# is the key factor in limiting storage densities rather than the recording material s thickness for organic materials in which the scatter is relatively high. A storage density of 100 bits m2 is experimentally demonstrated by use of a 1-mm-thick LiNbO3 crystal as the recording medium

    Shift multiplexing with spherical reference waves

    Get PDF
    Shift multiplexing is a holographic storage method particularly suitable for the implementation of holographic disks. We characterize the performance of shift-multiplexed memories by using a spherical wave as the reference beam. We derive the shift selectivity, the cross talk, the exposure schedule, and the storage density of the method. We give experimental results to verify the theoretical predictions

    Alignment sensitivity of holographic three-dimensional disks

    Get PDF
    We describe the rotational alignment sensitivity of three-dimensional holographic disks. It is shown that the reconstructed image always rotates by the angle by which the disk rotates; however, the center and the radius of rotation change as the recording geometry changes. A comparison among image plane, Fourier plane, and Fresnel holograms is given, and an optimum configuration (in terms of alignment sensitivity) in which the radius of rotation is zero is derived. We present experimental results and also discuss how the rotation alignment sensitivity affects the storage density and the readout–recording speed of the three-dimensional disk. A brief summary of other sources of misalignment is given

    Quantum Holographic Encoding in a Two-dimensional Electron Gas

    Full text link
    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures--"molecular holograms"--which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as ~0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm2 and place tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page manuscript (including 4 figures) + 2 page supplement (including 1 figure); supplementary movie available at http://mota.stanford.ed

    Study of multiple hologram recording in lithium niobate

    Get PDF
    The results of detailed experimental and theoretical considerations relating to multiple hologram recording in lithium niobate are reported. The following problem areas are identified and discussed: (1) the angular selectivity of the stored holograms, (2) interference effects due to the crystal surfaces, (3) beam divergence effects, (4) material recording sensitivity, and (5) scattered light from material inhomogeneities

    Holographic Storage of Biphoton Entanglement

    Full text link
    Coherent and reversible storage of multi-photon entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although single photon has been successfully stored in different quantum systems, storage of multi-photon entanglement remains challenging because of the critical requirement for coherent control of photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates Bell's inequality for 1 microsecond storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.Comment: 5 pages, 4 figures, accepted by Phys. Rev. Let

    Storage of 1000 holograms with use of a dual-wavelength method

    Get PDF
    We demonstrate the storage of 1000 holograms in a memory architecture that makes use of different wavelengths for recording and readout to reduce the grating decay while retrieving data. Bragg-mismatch problems from the use of two wavelengths are minimized through recording in the image plane and using thin crystals. Peristrophic multiplexing can be combined with angle multiplexing to counter the poorer angular selectivity of thin crystals. Dark conductivity reduces the effectiveness of the dual-wavelength method for nonvolatile readout, and constraints on the usable pixel sizes limit this method to moderate storage densities
    corecore