743 research outputs found

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    Development of a Quality of Service Framework for Multimedia Streaming Applications

    Get PDF
    By the year 2012, it is expected that the majority of all Internet traffic will be video content. Coupled with this is the increasing availability of Wireless Local Area Networks (WLANs) due to their ease of deployment, flexibility and reducing roll out costs. Unfortunately the contention based access mechanism utilised by IEEE 802.11 WLANs does not suit the non-uniform or bursty bandwidth profile of a video stream which can lead to a reduced quality of service (QoS) being experienced by the end-user. In 2005, the IEEE 802.11e protocol was ratified in an attempt to solve this emerging problem. It provides for an access prioritization mechanism based upon four separate traffic classes or access categories (ACs). Each AC is characterised by a set of access parameters that determine its level of access priority which is turn determines the amount of bandwidth available to it. Computer simulation studies have shown that AC prioritisation can yield significant improvements in the QoS delivered over a WLAN. However, these studies have been based upon the use of static access parameters for the ACs. In practice, this is not a viable solution owing to the dynamic and unpredictable nature of the operating conditions on WLANs. In this thesis, an experimental study of AC prioritisation based upon adaptive tuning of the access parameters is presented. This new approach to bandwidth provisioning for video streaming is shown to yield significant improvements in the QoS under a wide range of different operating conditions. For example, it is shown that by adaptively tuning the access control parameters in response to the network conditions, the number of video frames delivered that satisfy QoS requirements is more than doubled

    Wi-Fi QoS improvements for industrial automation

    Get PDF
    Digitalization caused a considerable increase in the use of industrial automation applications. Industrial automation applications use real-time traffic with strict requirements of connection of tens of devices, high-reliability, determinism, low-latency, and synchronization. The current solutions meeting these requirements are wired technologies. However, there is a need for wireless technologies for mobility,less complexity, and quick deployment. There are many studies on cellular technologies for industrial automation scenarios with strict reliability and latency requirements, but not many developments for wireless communications over unlicensed bands. Wireless Fidelity (Wi-Fi) is a commonly used and preferred technology in factory automation since it is supported by many applications and operates on a license free-band. However, there is still room for improving Wi-Fi systems performance for low-latency and high-reliable communication requirements in industrial automation use cases. There are various limitations in the current Wi-Fi system restraining the deployment for time-critical operations. For meeting the strict timing requirements of low delay and jitter in industrial automation applications, Quality of Service (QoS)in Wi-Fi needs to be improved. In this thesis, a new access category in Medium Access Control (MAC) layer for industrial automation applications is proposed.The performance improvement is analyzed with simulations, and a jitter definition for a Wi-Fi system is studied. Then, a fixed Modulation and Coding (MCS) link adaptation method and bounded delay is implemented for time-critical traffic in the simulation cases to observe performance changes. Finally, it is shown that the new access category with no backoff time can decrease the delay and jitter of time-critical applications. The improvements in Wi-Fi QoS are shown in comparison with the current standard, and additional enhancements about using a fixed modulation and coding scheme and implementation of a bounded delay are also analyzed in this thesi
    corecore