465 research outputs found

    Characterisation of cognitive load using machine learning classifiers of electroencephalogram data

    Get PDF
    A high cognitive load can overload a person, potentially resulting in catastrophic accidents. It is therefore important to ensure the level of cognitive load associated with safety-critical tasks (such as driving a vehicle) remains manageable for drivers, enabling them to respond appropriately to changes in the driving environment. Although electroencephalography (EEG) has attracted significant interest in cognitive load research, few studies have used EEG to investigate cognitive load in the context of driving. This paper presents a feasibility study on the simulation of various levels of cognitive load through designing and implementing four driving tasks. We employ machine learning-based classification techniques using EEG recordings to differentiate driving conditions. An EEG dataset containing these four driving tasks from a group of 20 participants was collected to investigate whether EEG can be used as an indicator of changes in cognitive load. The collected dataset was used to train four Deep Neural Networks and four Support Vector Machine classification models. The results showed that the best model achieved a classification accuracy of 90.37%, utilising statistical features from multiple frequency bands in 24 EEG channels. Furthermore, the Gamma and Beta bands achieved higher classification accuracy than the Alpha and Theta bands during the analysis. The outcomes of this study have the potential to enhance the Human–Machine Interface of vehicles, contributing to improved safety

    Development and applications of a smartphone-based mobile electroencephalography (EEG) system

    Get PDF
    Electroencephalography (EEG) is a clinical and research technique used to non-invasively acquire brain activity. EEG is performed using static systems in specialist laboratories where participant mobility is constrained. It is desirable to have EEG systems which enable acquisition of brain activity outside such settings. Mobile systems seek to reduce the constraining factors of EEG device and participant mobility to enable recordings in various environments but have had limited success due to various factors including low system specification. The main aim of this thesis was to design, build, test and validate a novel smartphone-based mobile EEG system.A literature review found that the term ‘mobile EEG’ has an ambiguous meaning as researchers have used it to describe many differing degrees of participant and device mobility. A novel categorisation of mobile EEG (CoME) scheme was derived from thirty published EEG studies which defined scores for participant and device mobilities, and system specifications. The CoME scheme was subsequently applied to generate a specification for the proposed mobile EEG system which had 24 channels, sampled at 24 bit at a rate of 250 Hz. Unique aspects of the EEG system were the introduction of a smartphone into the specification, along with the use of Wi-Fi for communications. The smartphone’s processing power was used to remotely control the EEG device so as to enable EEG data capture and storage as well as electrode impedance checking via the app. This was achieved by using the Unity game engine to code an app which provided the flexibility for future development possibilities with its multi-platform support.The prototype smartphone-based waist-mounted mobile EEG system (termed ‘io:bio’) was validated against a commercial FDA clinically approved mobile system (Micromed). The power spectral frequency, amplitude and area of alpha frequency waves were determined in participants with their eyes closed in various postures: lying, sitting, standing and standing with arms raised. Since a correlation analysis to compare two systems has interpretability problems, Bland and Altman plots were utilised with a priori justified limits of agreement to statistically assess the agreement between the two EEG systems. Overall, the results found similar agreements between the io:bio and Micromed systems indicating that the systems could be used interchangeably. Utilising the io:bio and Micromed systems in a walking configuration, led to contamination of EEG channels with artifacts thought to arise from movement and muscle-related sources, and electrode displacement.To enable an event related potential (ERP) capability of the EEG system, additional coding of the smartphone app was undertaken to provide stimulus delivery and associated data marking. Using the waist-mounted io:bio system, an auditory oddball paradigm was also coded into the app, and delivery of auditory tones (standard and deviant) to the participant (sitting posture) achieved via headphones connected to the smartphone. N100, N200 and P300 ERP components were recorded in participants sitting, and larger amplitudes were found for the deviant tones compared to the standard ones. In addition, when the paradigm was tested in individual participants during walking, movement-related artifacts impacted negatively upon the quality of the ERP components, although components were discernible in the grand mean ERP.The io:bio system was redesigned into a head-mounted configuration in an attempt to reduce EEG artifacts during participant walking. The initial approach taken to redesign the system involved using electronic components populated onto a flexible PCB proved to be non-robust. Instead, the rigid PCB form of the circuitry was taken from the io:bio waist-mounted system and placed onto the rear head section of the electrode cap via a bespoke cradle. Using this head-mounted system, in a preliminary auditory oddball paradigm study, ERP responses were obtained in participants whilst walking. Initial results indicate that artifacts are reduced in this head-mounted configuration, and N100, N200 and P300 components are clearly identifiable in some channels

    A Quantitative analysis of the mental workload demands of MRAP vehicle drivers using physiological, subjective, and performance assessments

    Get PDF
    United States Special Operations Command (USSOCOM) Operators and vehicle Commanders are specially trained United States military Warfighters that have the demanding task of operating or working onboard Mine Resistant Ambush Protected (MRAP) All Terrain Vehicles (M-ATVs). Their missions encounter significant mental demands resulting from fatigue, highly stressful situations, and interactions with Government Furnished Equipment (GFE). Excessive mental demands can be the primary factor leading to compromised vehicle communication, missed improvised explosive device (IED) detection, and increased incidents of vehicle roll-over. Research has demonstrated the consequences of mental overloading including increased errors, performance decrements, distraction, cognitive tunneling and inadequate time to appropriately process information. The objectives of this thesis were to evaluate the extent to which task-related factors impact the mental workload of Warfighters and to evaluate the consistency among the three categories of mental workload metrics. The 14 participants studied in this research were Marine Corps personnel who had heavy vehicle driving experience. Physiological, subjective and performance measures were collected during a four-segment course that progressed in difficulty and analyzed across all participants to assess changes in mental workload. It was found that task-related factors impacted the mental workload of Warfighters. The subjective metric was able to capture changes in workload more accurately than biosignals. Due to technical problems with the biosignal data, comparison of consistency across metrics was inconclusive. The subjective workload ratings were significantly different between course segments and experience levels. The experiment resulted in workload ratings that increased by as much as 94% between segments and were 18% higher among novice drivers. This study showed that mental workload fluctuates while driving in a stressful situation, despite training and experience, and consequently, detection performance will be impacted which could have very adverse consequences. There is the need for additional research to have a better understanding of the true impact of mental workload on MRAP vehicle drivers, especially in an operational environment

    Differentiating Active And Passive Fatigue States With The Use Of Electroencephalography

    Get PDF
    With advances in automation technology, it is becoming essential to understand how automation affects human operators. A concern for the implementation of automation technology is the interactive effects it has with operator cognitive fatigue. Desmond and Hancock (2001) proposed that two types of fatigue can arise depending on the nature of the task: active and passive. Active fatigue results when operators must make constant perceptual-motor adjustments during high task demands, while passive fatigue results from operators executing little or no perceptual-motor adjustments during low task demands, similar to when automation is employed. The purpose of this study was to use electroencephalographic (EEG) indices of workload, engagement, and a candidate marker of strain under fatigue in conjunction with performance and subjective measures to differentiate active and passive fatigue states. Participants (N = 84) performed a generalized flight simulator for 62 min either under active, passive, or control conditions. Passive fatigue was characterized by reduced EEG engagement and initially elevated and stable ratios of Fz theta to POz alpha power compared to active fatigue. Subjective measure results indicated that passive fatigue was characterized by reduced ratings of alertness and workload compared to active fatigue. No performance differences were observed between fatigue conditions; however, an overall speed-accuracy trade-off was observed from pre to post fatigue induction. This study demonstrated that different fatigue states produce different effects on EEG indices. These results have potential applications for developing augmented cognition technologies that deliver appropriate fatigue countermeasures in automated operational environments

    Validation of fNIRS System as a Technique to Monitor Cognitive Workload

    Get PDF
    CognitiveWorkload (CW) is a key factor in the human learning context. Knowing the optimal amount of CW is essential to maximise cognitive performance, emerging as an important variable in e-learning systems and Brain-Computer Interfaces (BCI) applications. Functional Near-Infrared Spectroscopy (fNIRS) has emerged as a promising avenue of brain discovery because of its easy setup and robust results. It is, in fact, along with Electroencephalography (EEG), an encouraging technique in the context of BCI. Brain- Computer Interfaces, by tracking the user’s cognitive state, are suitable for educational systems. Thus, this work sought to validate the fNIRS technique for monitoring different CW stages. For this purpose, we acquired the fNIRS and EEG signals when performing cognitive tasks, which included a progressive increase of difficulty and simulation of the learning process. We also used the breathing sensor and the participants’ facial expressions to assess their cognitive status. We found that both visual inspections of fNIRS signals and power spectral analysis of EEG bands are not sufficient for discriminating cognitive states, nor quantify CW. However, by applying machine learning (ML) algorithms, we were able to distinguish these states with mean accuracies of 79.8%, reaching a value of 100% in one specific case. Our findings provide evidence that fNIRS technique has the potential to monitor different levels of CW. Furthermore, our results suggest that this technique allied with the EEG and combined via ML algorithms is a promising tool to be used in the e-learning and BCI fields for its skill to discriminate and characterize cognitive states.O esforço cognitivo (CW) é um factor relevante no contexto da aprendizagem humana. Conhecer a quantidade óptima de CW é essencial para maximizar o desempenho cognitivo, surgindo como uma variável importante em sistemas de e-learning e aplicações de Interfaces Cérebro-Computador (BCI). A Espectroscopia Funcional de Infravermelho Próximo (fNIRS) emergiu como uma via de descoberta do cérebro devido à sua fácil configuração e resultados robustos. É, de facto, juntamente com a Electroencefalografia (EEG), uma técnica encorajadora no contexto de BCI. As interfaces cérebro-computador, ao monitorizar o estado cognitivo do utilizador, são adequadas para sistemas educativos. Assim, este trabalho procurou validar o sistema de fNIRS como uma técnica de monitorização de CW. Para este efeito, adquirimos os sinais fNIRS e EEG aquando da execução de tarefas cognitivas, que incluiram um aumento progressivo de dificuldade e simulação do processo de aprendizagem. Utilizámos, ainda, o sensor de respiração e as expressões faciais dos participantes para avaliar o seu estado cognitivo. Verificámos que tanto a inspeção visual dos sinais de fNIRS como a análise espectral dos sinais de EEG não são suficientes para discriminar estados cognitivos, nem para quantificar o CW. No entanto, aplicando algoritmos de machine learning (ML), fomos capazes de distinguir estes estados com exatidões médias de 79.8%, chegando a atingir o valor de 100% num caso específico. Os nossos resultados fornecem provas da prospecção da técnica fNIRS para supervisionar diferentes níveis de CW. Além disso, os nossos resultados sugerem que esta técnica aliada à de EEG e combinada via algoritmos ML é uma ferramenta promissora a ser utilizada nos campos do e-learning e de BCI, pela sua capacidade de discriminar e caracterizar estados cognitivos

    Multimodal attention in a simulated driving environment - Novel approaches to the quantification of attention based on brain activity

    Get PDF
    The concept of attention is an established focus of study in neurosciences. The quantification of attention during driving can help identify situations in which the driver is not completely aware of the situation. This work deals with the implementation of a setup to simulate a driving environment that enables audiovisual tasks to be embedded into the driving task while acquiring biosignals such as electroencephalography. The main goal of this dissertation was to find a correlation between attention and brain activity as seen on the electroencephalographic activity while driving. By using the principle of phase-amplitude coupling in electroencephalographic signals, it was hypothesized that Theta-Gamma phase-amplitude coupling might correlate to multimodal attention and thus might be eligible as a biomarker of attention in tasks such as driving. Surface electroencephalography was measured simultaneously in drivers and copilots while participating in simulated driving scenarios with varying multimodal attentional demands. The phase-amplitude coupling between Theta-band phase and Gamma-band amplitude from the electroencephalograpic signal was obtained and evaluated. Results showed significant phase-amplitude coupling differences between drivers and copilots in areas related to multimodal attention (prefrontal cortex, frontal eye fields, primary motor cortex, and visual cortex). The results were confirmed by behavioral data acquired during the test (detection task). We conclude that phase-amplitude coupling does function as a biomarker for attentional demand by detecting cortical areas being activated through specific multimodal (in this case, driving) tasks. Additionally, the data acquired in the main work of this thesis was used to test an auditory stimulus reconstruction algorithm previously tested by our work group. The stimulus reconstruction allowed to obtain post-hoc additional information regarding attentional effort during driving (success of the stimulus reconstruction was significantly correlated to auditory effort) and serves as a compliment to the main results. This dissertation thus offers an insight on attentional systems in multimodal situations and the neurophysiological systems underlying attention. It develops methods to measure attention in a driving environment, both as seen using phase-amplitude coupling and by being able to single out auditory effort by reconstructing the auditory stimuli. Finally, these methods can be translated to other activities since they are both based on non-invasive electroencephalography

    Proceedings of the 3rd International Mobile Brain/Body Imaging Conference : Berlin, July 12th to July 14th 2018

    Get PDF
    The 3rd International Mobile Brain/Body Imaging (MoBI) conference in Berlin 2018 brought together researchers from various disciplines interested in understanding the human brain in its natural environment and during active behavior. MoBI is a new imaging modality, employing mobile brain imaging methods like the electroencephalogram (EEG) or near infrared spectroscopy (NIRS) synchronized to motion capture and other data streams to investigate brain activity while participants actively move in and interact with their environment. Mobile Brain / Body Imaging allows to investigate brain dynamics accompanying more natural cognitive and affective processes as it allows the human to interact with the environment without restriction regarding physical movement. Overcoming the movement restrictions of established imaging modalities like functional magnetic resonance tomography (MRI), MoBI can provide new insights into the human brain function in mobile participants. This imaging approach will lead to new insights into the brain functions underlying active behavior and the impact of behavior on brain dynamics and vice versa, it can be used for the development of more robust human-machine interfaces as well as state assessment in mobile humans.DFG, GR2627/10-1, 3rd International MoBI Conference 201
    corecore