5 research outputs found

    Demonstrating a multi-primary high dynamic range display system for vision experiments.

    Get PDF
    We describe the design, construction, calibration, and characterization of a multi-primary high dynamic range (MPHDR) display system for use in vision research. The MPHDR display is the first system to our knowledge to allowfor spatially controllable, high dynamic range stimulus generation using multiple primaries.We demonstrate the high luminance, high dynamic range, and wide color gamut output of the MPHDR display. During characterization, the MPHDR display achieved a maximum luminance of 3200 cd=m2, a maximum contrast range of 3; 240; 000 V 1, and an expanded color gamut tailored to dedicated vision research tasks that spans beyond traditional sRGB displays. We discuss how the MPHDR display could be optimized for psychophysical experiments with photoreceptor isolating stimuli achieved through the method of silent substitution. We present an example case of a range of metameric pairs of melanopsin isolating stimuli across different luminance levels, from an available melanopsin contrast of117%at 75 cd=m2 to a melanopsin contrast of23%at 2000 cd=m2

    High-dynamic-range Foveated Near-eye Display System

    Get PDF
    Wearable near-eye display has found widespread applications in education, gaming, entertainment, engineering, military training, and healthcare, just to name a few. However, the visual experience provided by current near-eye displays still falls short to what we can perceive in the real world. Three major challenges remain to be overcome: 1) limited dynamic range in display brightness and contrast, 2) inadequate angular resolution, and 3) vergence-accommodation conflict (VAC) issue. This dissertation is devoted to addressing these three critical issues from both display panel development and optical system design viewpoints. A high-dynamic-range (HDR) display requires both high peak brightness and excellent dark state. In the second and third chapters, two mainstream display technologies, namely liquid crystal display (LCD) and organic light emitting diode (OLED), are investigated to extend their dynamic range. On one hand, LCD can easily boost its peak brightness to over 1000 nits, but it is challenging to lower the dark state to \u3c 0.01 nits. To achieve HDR, we propose to use a mini-LED local dimming backlight. Based on our simulations and subjective experiments, we establish practical guidelines to correlate the device contrast ratio, viewing distance, and required local dimming zone number. On the other hand, self-emissive OLED display exhibits a true dark state, but boosting its peak brightness would unavoidably cause compromised lifetime. We propose a systematic approach to enhance OLED\u27s optical efficiency while keeping indistinguishable angular color shift. These findings will shed new light to guide future HDR display designs. In Chapter four, in order to improve angular resolution, we demonstrate a multi-resolution foveated display system with two display panels and an optical combiner. The first display panel provides wide field of view for peripheral vision, while the second panel offers ultra-high resolution for the central fovea. By an optical minifying system, both 4x and 5x enhanced resolutions are demonstrated. In addition, a Pancharatnam-Berry phase deflector is applied to actively shift the high-resolution region, in order to enable eye-tracking function. The proposed design effectively reduces the pixelation and screen-door effect in near-eye displays. The VAC issue in stereoscopic displays is believed to be the main cause of visual discomfort and fatigue when wearing VR headsets. In Chapter five, we propose a novel polarization-multiplexing approach to achieve multiplane display. A polarization-sensitive Pancharatnam-Berry phase lens and a spatial polarization modulator are employed to simultaneously create two independent focal planes. This method enables generation of two image planes without the need of temporal multiplexing. Therefore, it can effectively reduce the frame rate by one-half. In Chapter six, we briefly summarize our major accomplishments

    Encoding high dynamic range and wide color gamut imagery

    Get PDF
    In dieser Dissertation wird ein szenischer Bewegtbilddatensatz mit erweitertem Dynamikumfang (High Dynamic Range, HDR) und großem Farbumfang (Wide Color Gamut, WCG) eingeführt und es werden Modelle zur Kodierung von HDR und WCG Bildern vorgestellt. Die objektive und visuelle Evaluation neuer HDR und WCG Bildverarbeitungsalgorithmen, Kompressionsverfahren und Bildwiedergabegeräte erfordert einen Referenzdatensatz hoher Qualität. Daher wird ein neuer HDR- und WCG-Video-Datensatz mit einem Dynamikumfang von bis zu 18 fotografischen Blenden eingeführt. Er enthält inszenierte und dokumentarische Szenen. Die einzelnen Szenen sind konzipiert um eine Herausforderung für Tone Mapping Operatoren, Gamut Mapping Algorithmen, Kompressionscodecs und HDR und WCG Bildanzeigegeräte darzustellen. Die Szenen sind mit professionellem Licht, Maske und Filmausstattung aufgenommen. Um einen cinematischen Bildeindruck zu erhalten, werden digitale Filmkameras mit ‘Super-35 mm’ Sensorgröße verwendet. Der zusätzliche Informationsgehalt von HDR- und WCG-Videosignalen erfordert im Vergleich zu Signalen mit herkömmlichem Dynamikumfang eine neue und effizientere Signalkodierung. Ein Farbraum für HDR und WCG Video sollte nicht nur effizient quantisieren, sondern wegen der unterschiedlichen Monitoreigenschaften auf der Empfängerseite auch für die Dynamik- und Farbumfangsanpassung geeignet sein. Bisher wurden Methoden für die Quantisierung von HDR Luminanzsignalen vorgeschlagen. Es fehlt jedoch noch ein entsprechendes Modell für Farbdifferenzsignale. Es werden daher zwei neue Farbräume eingeführt, die sich sowohl für die effiziente Kodierung von HDR und WCG Signalen als auch für die Dynamik- und Farbumfangsanpassung eignen. Diese Farbräume werden mit existierenden HDR und WCG Farbsignalkodierungen des aktuellen Stands der Technik verglichen. Die vorgestellten Kodierungsschemata erlauben es, HDR- und WCG-Video mittels drei Farbkanälen mit 12 Bits tonaler Auflösung zu quantisieren, ohne dass Quantisierungsartefakte sichtbar werden. Während die Speicherung und Übertragung von HDR und WCG Video mit 12-Bit Farbtiefe pro Kanal angestrebt wird, unterstützen aktuell verbreitete Dateiformate, Videoschnittstellen und Kompressionscodecs oft nur niedrigere Bittiefen. Um diese existierende Infrastruktur für die HDR Videoübertragung und -speicherung nutzen zu können, wird ein neues bildinhaltsabhängiges Quantisierungsschema eingeführt. Diese Quantisierungsmethode nutzt Bildeigenschaften wie Rauschen und Textur um die benötigte tonale Auflösung für die visuell verlustlose Quantisierung zu schätzen. Die vorgestellte Methode erlaubt es HDR Video mit einer Bittiefe von 10 Bits ohne sichtbare Unterschiede zum Original zu quantisieren und kommt mit weniger Rechenkraft im Vergleich zu aktuellen HDR Bilddifferenzmetriken aus
    corecore