200 research outputs found

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration

    Concurrent Imaging for TerraSAR-X: Wide-Area Imaging paired with High-Resolution Capabilities

    Get PDF
    The concurrent imaging technique enables parallel acquisitions with different beams or modes, e.g., a wide area Stripmap mode with a high resolution Spotlight mode. Such a concurrent Stripmap/Spotlight imaging technique is investigated for TerraSAR-X. This technique employs a pulse-topulse interleaving scheme to acquire two acquisitions - even of disjunctive areas - at the same time, offering products with different resolution and coverage portfolios. This capability is especially interesting for customers interested in an overview of a larger area but at the same time observing an area of interest with higher resolution, e.g., for infrastructure monitoring or reconnaissance applications. The basic concept, as well as the driving system parameters, are discussed in detail, together with a coverage analysis revealing the high availability rate of the mode combinations on a global scale. A processing approach reusing a substantial part of the existing infrastructure is described and exemplary acquisitions are shown, together with a detailed performance analysis with respect to resolution and ambiguities

    Maritime Moving Target Detection, Tracking and Geocoding Using Range-Compressed Airborne Radar Data

    Get PDF
    Eine regelmäßige und großflächige überwachung des Schiffsverkehrs gewinnt zunehmend an Bedeutung, vor allem auch um maritime Gefahrenlagen und illegale Aktivitäten rechtzeitig zu erkennen. Heutzutage werden dafür überwiegend das automatische Identifikationssystem (AIS) und stationäre Radarstationen an den Küsten eingesetzt. Luft- und weltraumgestützte Radarsensoren, die unabhängig vom Wetter und Tageslicht Daten liefern, können die vorgenannten Systeme sehr gut ergänzen. So können sie beispielsweise Schiffe detektieren, die nicht mit AIS-Transpondern ausgestattet sind oder die sich außerhalb der Reichweite der stationären AIS- und Radarstationen befinden. Luftgestützte Radarsensoren ermöglichen eine quasi-kontinuierliche Beobachtung von räumlich begrenzten Gebieten. Im Gegensatz dazu bieten weltraumgestützte Radare eine große räumliche Abdeckung, haben aber den Nachteil einer geringeren temporalen Abdeckung. In dieser Dissertation wird ein umfassendes Konzept für die Verarbeitung von Radardaten für die Schiffsverkehr-überwachung mit luftgestützten Radarsensoren vorgestellt. Die Hauptkomponenten dieses Konzepts sind die Detektion, das Tracking, die Geokodierung, die Bildgebung und die Fusion mit AIS-Daten. Im Rahmen der Dissertation wurden neuartige Algorithmen für die ersten drei Komponenten entwickelt. Die Algorithmen sind so aufgebaut, dass sie sich prinzipiell für zukünftige Echtzeitanwendungen eignen, die eine Verarbeitung an Bord der Radarplattform erfordern. Darüber hinaus eignen sich die Algorithmen auch für beliebige, nicht-lineare Flugpfade der Radarplattform. Sie sind auch robust gegenüber Lagewinkeländerungen, die während der Datenerfassung aufgrund von Luftturbulenzen jederzeit auftreten können. Die für die Untersuchungen verwendeten Daten sind ausschließlich entfernungskomprimierte Radardaten. Da das Signal-Rausch-Verhältnis von Flugzeugradar-Daten im Allgemeinen sehr hoch ist, benötigen die neuentwickelten Algorithmen keine vollständig fokussierten Radarbilder. Dies reduziert die Gesamtverarbeitungszeit erheblich und ebnet den Weg für zukünftige Echtzeitanwendungen. Der entwickelte neuartige Schiffsdetektor arbeitet direkt im Entfernungs-Doppler-Bereich mit sehr kurzen kohärenten Verarbeitungsintervallen (CPIs) der entfernungskomprimierten Radardaten. Aufgrund der sehr kurzen CPIs werden die detektierten Ziele im Dopplerbereich fokussiert abgebildet. Wenn sich die Schiffe zusätzlich mit einer bestimmten Radialgeschwindigkeit bewegen, werden ihre Signale aus dem Clutter-Bereich hinausgeschoben. Dies erhöht das Verhältnis von Signal- zu Clutter-Energie und verbessert somit die Detektierbarkeit. Die Genauigkeit der Detektion hängt stark von der Qualität der von der Meeresoberfläche rückgestreuten Radardaten ab, die für die Schätzung der Clutter-Statistik verwendet werden. Diese wird benötigt, um einen Detektions-Schwellenwert für eine konstante Fehlalarmrate (CFAR) abzuleiten und die Anzahl der Fehlalarme niedrig zu halten. Daher umfasst der vorgeschlagene Detektor auch eine neuartige Methode zur automatischen Extraktion von Trainingsdaten für die Statistikschätzung sowie geeignete Ozean-Clutter-Modelle. Da es sich bei Schiffen um ausgedehnte Ziele handelt, die in hochauflösenden Radardaten mehr als eine Auflösungszelle belegen, werden nach der Detektion mehrere von einem Ziel stammende Pixel zu einem physischen Objekten zusammengefasst, das dann in aufeinanderfolgenden CPIs mit Hilfe eines Bewegungsmodells und eines neuen Mehrzielverfolgungs-Algorithmus (Multi-Target Tracking) getrackt wird. Während des Trackings werden falsche Zielspuren und Geisterzielspuren automatisch erkannt und durch ein leistungsfähiges datenbankbasiertes Track-Management-System terminiert. Die Zielspuren im Entfernungs-Doppler-Bereich werden geokodiert bzw. auf den Boden projiziert, nachdem die Einfallswinkel (DOA) aller Track-Punkte geschätzt wurden. Es werden verschiedene Methoden zur Schätzung der DOA-Winkel für ausgedehnte Ziele vorgeschlagen und anhand von echten Radardaten, die Signale von echten Schiffen beinhalten, bewertet

    Space Archaeology: Survey and Implementation of Deep Learning Methods for Detecting Ancient Structures

    Get PDF
    Remote sensing instruments are changing the nature of archaeological work. No longer are archaeological discoveries done by field work alone. Light Detection and Ranging, or LiDAR, optical imagery and different types of satellite data are giving opportunities for archaeological discoveries in areas which might be inaccessible to archaeologists. Different types of machine learning and deep learning methods are also being applied to remote sensing data, which enables automatic searches to large scale areas for detection of archaeological remains. In this thesis faster R-CNN object detection deep learning frameworks were used to train models and apply these to three types of archaeological remains. LiDAR based Digital Terrain Models were used to identify burial mounds in Norway. Optical imagery was used to identify fortress structures in Central Asia. Synthetic Aperture Radar data, or SAR, was used to detect archaeological settlement mounds in Central Asia. The success and limitations of these models are presented

    Technique-Based Exploitation Of Low Grazing Angle SAR Imagery Of Ship Wakes

    Get PDF
    The pursuit of the understanding of the effect a ship has on water is a field of study that is several hundreds of years old, accelerated during the years of the industrial revolution where the efficiency of a ship’s engine and hull determined the utility of the burgeoning globally important sea lines of communication. The dawn of radar sensing and electronic computation have expanding this field of study still further where new ground is still being broken. This thesis looks to address a niche area of synthetic aperture radar imagery of ship wakes, specifically the imaging geometry utilising a low grazing angle, where significant non-linear effects are often dominant in the environment. The nuances of the synthetic aperture radar processing techniques compounded with the low grazing angle geometry to produce unusual artefacts within the imagery. It is the understanding of these artefacts that is central to this thesis. A sub-aperture synthetic aperture radar technique is applied to real data alongside coarse modelling of a ship and its wake before finally developing a full hydrodynamic model for a ship’s wake from first principles. The model is validated through comparison with previously developed work. The analysis shows that the resultant artefacts are a culmination of individual synthetic aperture radar anomalies and the reaction of the radar energy to the ambient sea surface and spike events

    Remote sensing of sea ice properties and dynamics using SAR interferometry

    Get PDF
    Landfast ice is attached to the coastline and islands and stays immobile over most of the ice season. It is an important element of polar ecosystems and plays a vital role as a marine habitat and in life of local people and economy through offshore technology. Landfast ice is routinely used for on-ice traffic, tourism, and industry, and it protects coasts from storms in winter from erosion. However, landfast ice can break or experience deformation in order of centimeters to meters, which can be dangerous for the coastline and man-made structures, beacons, on-ice traffic, and represents a safety risk for working on the ice and local people. Therefore, landfast ice deformation and stability are important topics in coastal engineering and sea ice modeling. In the framework of this dissertation, InSAR (SAR Interferometry) technology has been applied for deriving landfast ice displacements (publication I), and mapping sea ice morphology, topography and its temporal change (publication III). Also, advantages of InSAR remote sensing in sea ice classification compared to backscatter intensity were demonstrated (publications II and IV). In publication I, for the first time, Sentinel-1 repeat-pass InSAR data acquired over the landfast ice areas were used to study the landfast ice displacements in the Gulf of Bothnia. An InSAR pair with a temporal baseline of 12 days acquired in February 2015 was used. In the study, the surface of landfast ice was stable enough to preserve coherence over the 12-day period, enabling analysis of the interferogram. The advantage of this long temporal baseline is in separating the landfast ice from drift ice and detecting long-term trends in deformation maps. The interferogram showed displacements of landfast ice on the order of 40 cm. The main factor seemed to be compression by drift ice, which was driven against the landfast ice boundary by strong winds from southwest. Landfast ice ridges can hinder ship navigation, but grounded ridges help to stabilize the ice cover. In publication III, ridge formation and displacements in the landfast ice near Utqiaġvik, Alaska were examined. The phase signatures of two single-pass bistatic X-band SAR (Synthetic Aperture Radar) image pairs acquired by TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) satellite on 13 and 24 January 2012 were analyzed. Altogether six cases were identified with ridge displacement in four and formation in two cases under onshore compression. The ridges moved approximately 0.6 and 3.7 km over the study area and ridge formation reached up to 1 meter in upward. The results well corresponded with the locations identified as convergence zones retrieved from the drift algorithm generated by a SAR-based sea ice-tracking algorithm, backscatter intensity images and coastal radar imagery. This method could potentially be used in future to evaluate sea ice stability and ridge formation. A bistatic InSAR pair acquired by the TanDEM-X mission in March 2012 over the Bothnian Bay was used in two further studies (publications II and IV). The potential of X-band InSAR imagery for automated sea ice classification was evaluated. The first results were presented in publication II and the data were further elaborated in publication IV. The backscatter intensity, coherence magnitude and InSAR-phase features, as well as their different combinations, were used as the informative features in classification experiments. In publication II, the purpose was to assess ice properties on the scale used in ice charting, with ice types based on ice concentration and sea ice morphology, while in publication IV, a detailed small-scale analysis was performed. In addition, the sampling design was different in these publications. In publication II, to achieve the best discrimination between open water and several sea-ice types, RF (Random Forests) and ML (Maximum likelihood) classifiers were employed. The best overall accuracies were achieved by combining backscatter intensity & InSAR-phase using RF approach and backscatter intensity & coherence-magnitude using ML approach. The results showed the advantage of adding InSAR features to backscatter intensity for sea ice classification. In the further study (publication IV), a set of state-of-the-art classification approaches including ML, RF and SVM (Support Vector Machine) classifiers were used to achieve the best discrimination between open water and several sea-ice types. Adding InSAR-phase and coherence magnitude to backscatter intensity improved the OA (Overall Accuracy) compared to using only backscatter intensity. The RF and SVM algorithms gave somewhat larger OA compared to ML at the expense of a somewhat longer processing time. Results of publications II and IV demonstrate InSAR features have potential to improve sea ice classification. InSAR could be used by operational ice services to improve mapping accuracy of automated sea ice charting with statistical and machine learning classification approaches.Viime vuosikymmeninä satelliittivälitteisestä SAR-tutkasta on tullut erittäin tärkeä työkalu merijään kaukokartoituksessa. Tämän tutka perustuu sähkömagneettisten aaltojen sirontaan kiinnostavasta kohteesta takaisin tutkaan, mitä seuraa signaalin voimakkuuden mittaaminen. SAR-tutkat käyttävät synteettistä antennia, joka perustuu satelliitin liikkeeseen, mikä mahdollistaa tarkkojen, korkean erotuskyvyn kuvien tuottamisen. SAR-anturit mittaavat myös signaalin vaihetta, jota käytetään interferometria tekniikassa pinnan topografian ja siirtymien laskemiseen eri sovelluksissa, kuten maan muodonmuutoksissa, tarkassa kartoituksessa, maanjäristyksen arvioinnissa ja tulivuorenpurkauksien tarkkailussa. Interferometri tekniikkaa käytettiin tässä opinnäytetyössä pienten jäänsiirtymien analysointiin kiintojäävyöhykkeellä, joka on kiinni rantaviivassa ja saarissa eikä juuri liiku tuulien tai virtausten mukana. Kiintojääalueilla on pohjaan tarttuneita jäävalleja, jotka edistävät kiintojääpeitteen vakautumista. Kiintojäällä on tärkeä rooli merellisenä elinympäristönä, maankäytön kysymyksissä sekä paikallisten ihmisten elämässä ja meritekniikassa. Kiintojää voi murtua liikahdella useita metrejä, mikä voi olla vaarallista rakenteille, majakoille ja jäällä liikkujille. Tässä väitöskirjassa Sentinel-1A ja TanDEM-X satelliitteja ja interferometri tekniikkaa on käytetty arktisilla alueilla ja Itämerellä mittaamaan kiintojään muodonmuutoksia ja siirtymiä sekä niihin liittyviä mekanismeja. Lisäksi on tutkittu automaattista merijääluokitusta interferometrian apuohjelmiston avulla, mikä laajentaa operatiivisten merijääpalvelujen tutkahavaintojen käyttöä. Sentinel-1A:n avulla voitiin tarkastella 12 päivän pituisia muutoksia Pohjanlahden kiintojäävyöhykkeellä, kun interferometria tekniikka mittasi voimakkaan tuulen aiheuttaman 40 cm:n siirtymiä. Pohjoisella jäämerellä voitiin tunnistaa jäävallien siirtymiä ja muodostumia. Vallit siirtyivät noin 0,6 ja 3,7 km matkoja ja muodostuessaan ne kasvoivat metrin korkeuteen. Interferometri tekniikan lisääminen tutkakuvauksen analyysiin osoitti potentiaalin parantaa automaattisen merijääkartoituksen kartoituksen tarkkuutta tilastollisilla ja koneoppimiseen perustuvan luokittelun menetelmillä. Tulevaisuuden työnä merijään luokituksessa ja vallitutkimuksissa olisi suositeltavaa käyttää erilaisia ja useampia tutkakuvauksen geometrioita sekä erilaisia jääolosuhteita eri sääolosuhteiden vallitessa

    InSAR as a tool for monitoring hydropower projects: A review

    Get PDF
    This paper provides a review of using Interferometric Synthetic Aperture Radar (InSAR), a microwave remote sensing technique, for deformation monitoring of hydroelectric power projects, a critical infrastructure that requires consistent and reliable monitoring. Almost all major dams around the world were built for the generation of hydropower. InSAR can enhance dam safety by providing timely settlement measurements at high spatial-resolution. This paper provides a holistic view of different InSAR deformation monitoring techniques such as Differential Synthetic Aperture Radar Interferometry (DInSAR), Ground-Based Synthetic Aperture Radar (GBInSAR), Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR), Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPSInSAR) and Small BAseline Subset (SBAS). PSInSAR, GBInSAR, MTInSAR, and DInSAR techniques were quite commonly used for deformation studies. These studies demonstrate the advantage of InSAR-based techniques over other conventional methods, which are laborious, costly, and sometimes unachievable. InSAR technology is also favoured for its capability to provide monitoring data at all times of day or night, in all-weather conditions, and particularly for wide areas with mm-scale precision. However, the method also has some disadvantages, such as the maximum deformation rate that can be monitored, and the location for monitoring cannot be dictated. Through this review, we aim to popularize InSAR technology to monitor the deformation of dams, which can also be used as an early warning method to prevent any unprecedented catastrophe. This study also discusses some case studies from southern India to demonstrate the capabilities of InSAR to indirectly monitor dam health
    corecore