9,833 research outputs found

    OSEM : occupant-specific energy monitoring.

    Get PDF
    Electricity has become prevalent in modern day lives. Almost all the comforts people enjoy today, like home heating and cooling, indoor and outdoor lighting, computers, home and office appliances, depend on electricity. Moreover, the demand for electricity is increasing across the globe. The increasing demand for electricity and the increased awareness about carbon footprints have raised interest in the implementation of energy efficiency measures. A feasible remedy to conserve energy is to provide energy consumption feedback. This approach has suggested the possibility of considerable reduction in the energy consumption, which is in the range of 3.8% to 12%. Currently, research is on-going to monitor energy consumption of individual appliances. However, various approaches studied so far are limited to group-level feedback. The limitation of this approach is that the occupant of a house/building is unaware of his/her energy consumption pattern and has no information regarding how his/her energy-related behavior is affecting the overall energy consumption of a house/building. Energy consumption of a house/building largely depends on the energy-related behavior of individual occupants. Therefore, research in the area of individualized energy-usage feedback is essential. The OSEM (Occupant-Specific Energy Monitoring) system presented in this work is capable of monitoring individualized energy usage. OSEM system uses the electromagnetic field (EMF) radiated by appliances as a signature for appliance identification. An EMF sensor was designed and fabricated to collect the EMF radiated by appliances. OSEM uses proximity sensing to confirm the energy-related activity. Once confirmed, this activity is attributed to the occupant who initiated it. Bluetooth Low Energy technology was used for proximity sensing. This OSEM system would provide a detailed energy consumption report of individual occupants, which would help the occupants understand their energy consumption patterns and in turn encourage them to undertake energy conservation measures

    Structural dynamics branch research and accomplishments to FY 1992

    Get PDF
    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications

    Mapping of Cortical Motor Reorganization in Spinal Cord Injury

    Get PDF
    The annual incidence of spinal cord injury (SCI), not including those who die at the scene of the accident, is approximately 10,000 new cases in the United States. SCI, in its best outcome, may partially and temporarily disconnect the spinal cord from the brain. Some neuronal pathways remain intact in most S CI individuals, whose recovery depends on the utilization of the surviving connections. There is a change in the control of voluntary movements of the extremities by the cerebral cortex of the brain following spinal cord injury. The technology of high-resolution EEG co-registered with MRI was applied to non-invasively investigate the brain’s movement control network in both SCI and normal subjects. A series of active and passive movement tests were carried out to explore the changes that o ccur in the brain’s cortical motor control after SCI. The spatial location of the brain areas active during motor tasks was identified in each individual and a statistical analysis was performed. It was found that activation of the motor cortex in SC I patients originated from a posterior part of the brain compared to the normal controls. The spatial difference was found to be statistically significant in the two groups with the p-values less than 0.05 in both active and passive movement tests. We trust this study will contribute to the understanding of how the brain reorganizes its motor pathways after SCI. The clinical goal is the maximum utilization of the surviving connections to improve patient recovery. Also, understanding the neurona l activity and its topography in the brain is important in view of recent advances in experiments on primates. EEG can serve as an interface between the brain and computer-driven prostheses

    New Technology and Techniques for Needle-Based Magnetic Resonance Image-Guided Prostate Focal Therapy

    Get PDF
    The most common diagnosis of prostate cancer is that of localized disease, and unfortunately the optimal type of treatment for these men is not yet certain. Magnetic resonance image (MRI)-guided focal laser ablation (FLA) therapy is a promising potential treatment option for select men with localized prostate cancer, and may result in fewer side effects than whole-gland therapies, while still achieving oncologic control. The objective of this thesis was to develop methods of accurately guiding needles to the prostate within the bore of a clinical MRI scanner for MRI-guided FLA therapy. To achieve this goal, a mechatronic needle guidance system was developed. The system enables precise targeting of prostate tumours through angulated trajectories and insertion of needles with the patient in the bore of a clinical MRI scanner. After confirming sufficient accuracy in phantoms, and good MRI-compatibility, the system was used to guide needles for MRI-guided FLA therapy in eight patients. Results from this case series demonstrated an improvement in needle guidance time and ease of needle delivery compared to conventional approaches. Methods of more reliable treatment planning were sought, leading to the development of a systematic treatment planning method, and Monte Carlo simulations of needle placement uncertainty. The result was an estimate of the maximum size of focal target that can be confidently ablated using the mechatronic needle guidance system, leading to better guidelines for patient eligibility. These results also quantified the benefit that could be gained with improved techniques for needle guidance

    An Overview of the Alabama Burst Energetics eXplorer (ABEX) Mission

    Get PDF
    The Alabama Burst Energetics eXplorer (ABEX) project is a 12U scientific and educational mission to investigate Gamma-Ray Bursts (GRB) through spectral analysis and localization of joint gravitational-wave GRB mergers using wavefront timing analysis. The project is in development by a multi-university collaboration across Alabama with design work conducted by students under faculty advisement. The effort is organized and funded by the Alabama Space Grant Consortium and includes the University of Alabama, University of Alabama in Birmingham, University of South Alabama, Auburn University, and the University of Alabama in Huntsville. ABEX will deploy on a super-synchronous orbit and propulsively maneuver to a high eccentricity orbit of 300 km perigee by 60,000 km apogee at 27° inclination. From this high apogee destination, ABEX will observe GRB events using a suite of detectors that measure a broad energy range from keV to MeV. The highly eccentric orbit allows ABEX to perform wavefront timing between LEO gamma-ray missions as it passes through apogee. ABEX has several engineering systems being developed by cohort universities as part of its educational mission, specifically the On-Board Computers, Electrical Power System, Flight Software, chassis, and instrumentation. In this paper we present a broad overview of the mission, including the scientific and educational goals, spacecraft design, instrument design, and operations concept

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback

    Get PDF
    Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patient’s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot
    • …
    corecore