181 research outputs found

    Passive Source Localization of Sensor Arrays

    Get PDF

    Using heterogeneous satellites for passive detection of moving aerial target

    Get PDF
    Passive detection of a moving aerial target is critical for intelligent surveillance. Its implementation can use signals transmitted from satellites. Nowadays, various types of satellites co-exist which can be used for passive detection. As a result, a satellite signal receiver may receive signals from multiple heterogeneous satellites, causing difficult in echo signal detection. In this paper, a passive moving aerial target detection method leveraging signals from multiple heterogeneous satellites is proposed. In the proposed method, a plurality of direct wave signals is separated in a reference channel first. Then, an adaptive filter with normalized least-mean-square (NLMS) is adopted to suppress direct-path interference (DPI) and multi-path interference (MPI) in a surveillance channel. Next, the maximum values of the cross ambiguity function (CAF) and the fourth order cyclic cumulants cross ambiguity function (FOCCCAF) correspond into each separated direct wave signal and echo signal will be utilized as the detection statistic of each distributed sensor. Finally, final detection probabilities are calculated by decision fusion based on results from distributed sensors. To evaluate the performance of the proposed method, extensive simulation studies are conducted. The corresponding simulation results show that the proposed fusion detection method can significantly improve the reliability of moving aerial target detection using multiple heterogeneous satellites. Moveover, we also show that the proposed detection method is able to significantly improve the detection performance by using multiple collaborative heterogeneous satellites

    Joint smoothed l0-norm DOA estimation algorithm for multiple measurement vectors in MIMO radar

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l0-norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l0-norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l1-norm minimization based methods, such as l1-SVD (singular value decomposition), RV (real-valued) l1-SVD and RV l1-SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance

    Covariance-domain Dictionary Learning for Overcomplete EEG Source Identification

    Full text link
    We propose an algorithm targeting the identification of more sources than channels for electroencephalography (EEG). Our overcomplete source identification algorithm, Cov-DL, leverages dictionary learning methods applied in the covariance-domain. Assuming that EEG sources are uncorrelated within moving time-windows and the scalp mixing is linear, the forward problem can be transferred to the covariance domain which has higher dimensionality than the original EEG channel domain. This allows for learning the overcomplete mixing matrix that generates the scalp EEG even when there may be more sources than sensors active at any time segment, i.e. when there are non-sparse sources. This is contrary to straight-forward dictionary learning methods that are based on the assumption of sparsity, which is not a satisfied condition in the case of low-density EEG systems. We present two different learning strategies for Cov-DL, determined by the size of the target mixing matrix. We demonstrate that Cov-DL outperforms existing overcomplete ICA algorithms under various scenarios of EEG simulations and real EEG experiments

    An Improved Multiple-Toeplitz Matrices Reconstruction Algorithm for DOA Estimation of Coherent Signals

    Get PDF
    The Toeplitz matrix reconstruction algorithms exploit the row vector of an array output covariance matrix to reconstruct Toeplitz matrix, which provide the direction-of-arrival (DOA) estimation of coherent signals. However, the Toeplitz matrix reconstruction method based on any row vector of the array output covariance matrix suffers from signal correlation, it results in poor robustness. The methods based on multi-row vectors suffer serious performance degradation when in the low signal-to-noise ratio (SNR) owing to the noise energy is the square of the input noise energy. To solve the above problems, we propose an improved method that exploits all rows of the time-space correlation matrix to reconstruct the Toeplitz matrix, namely TS-MTOEP. This method firstly uses the coherence of the narrowband signal and the uncorrelated noise at different snapshots to construct the time-space correlation matrix, it effectively eliminates the influence of noise. Then, the Toeplitz matrix is reconstructed via all rows of the time-space correlation matrix, which effectively improves the energy of the signal, and further results in the improvement of the SNR. Finally, the DOAs can be obtained by combining it with the subspace-based methods. The theoretical analysis and simulation results indicate that compared with the existing Toeplitz and spatial smoothing methods, the proposed method in this paper provides good performance on estimation and resolution in cases with low input signal-to-noise due to time-space correlation matrix processing. Furthermore, in cases where the DOAs between the coherent sources are closely spaced and the snapshot number is low, our proposed method significantly improves the performance of the DOA estimation. We also provide the code to realize the reproducibility of the proposed method

    Research on performance enhancement for electromagnetic analysis and power analysis in cryptographic LSI

    Get PDF
    制度:新 ; 報告番号:甲3785号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6161Waseda Universit

    Single Molecule Sensing

    Get PDF
    Living organisms consist of cells, the elementary components of which are proteins providing cellular structures and functionality. Nowadays, proteins of the size of one to a few tens of nanometers can be efficiently monitored by fluorescence microscopy and/or spectroscopy reaching the necessary single molecule sensitivity. However, for a more complete understanding of biological processes, the combined investigation of both cellular structures and function at the single molecule level is essential. This work extends the possibilities of existing single molecule investigation methods. The goal was to conceive a functional super-resolution imaging technique by joining the strong concepts from state-of-the-art microscopy and spectroscopy and was approached in three steps. As a first step, confocal fluorescence correlation spectroscopy (FCS) was applied in nanochannels to create sub-diffraction sampling volumes. The resulting enhanced sensitivity to the surface effects depending on ionic surface layers led to a modified protein diffusion measured with FCS. Triplet state lifetime and population analysis have confirmed the model developed for the protein diffusion as a function of the ionic concentration. In the second step, stochastic optical reconstruction microscopy (STORM) was implemented and enhanced by merging with a recent labeling technique called SNAP-tag. As a result, the labeling technique for bright and switchable organic fluorescent dyes attached by a short linker of only ≈ 2.5 nm to the target molecule enabled a localization precision down to ≈ 10 nm. To meet the stringent photo-physical requirements imposed by STORM, toxic imaging buffers based on thiols have to be used. It was found that these requirements could be relaxed by super-resolution optical fluctuation imaging (SOFI) making a step forward to live-cell super-resolution investigations, which introduced the third step. In the third step, SOFI was characterized providing the basis for combining functional and structural super-resolution imaging techniques. The comparison of STORM and SOFI revealed the strengths of each technique. Under ideal blinking conditions with ultra-stable long-lived dark states, STORM outperforms SOFI. However, if the emitters are not well isolated, SOFI achieves a higher effective resolution than STORM and even without mislocalization artifacts. This led onto a novel imaging technique derived from SOFI: Cumulant microscopy merges structural super-resolution with functional imaging. Simulations and measurements showed that photo-physical parameters can be extracted from the emitters serving as nano-sensors. In conclusion, concepts of FCS have been merged with an improved super-resolution technique leading to a novel functional super-resolution imaging technique, which is compatible with living cells

    5D Parameter Estimation of Near-Field Sources Using Hybrid Evolutionary Computational Techniques

    Get PDF
    Hybrid evolutionary computational technique is developed to jointly estimate the amplitude, frequency, range, and 2D direction of arrival (elevation and azimuth angles) of near-field sources impinging on centrosymmetric cross array. Specifically, genetic algorithm is used as a global optimizer, whereas pattern search and interior point algorithms are employed as rapid local search optimizers. For this, a new multiobjective fitness function is constructed, which is the combination of mean square error and correlation between the normalized desired and estimated vectors. The performance of the proposed hybrid scheme is compared not only with the individual responses of genetic algorithm, interior point algorithm, and pattern search, but also with the existing traditional techniques. The proposed schemes produced fairly good results in terms of estimation accuracy, convergence rate, and robustness against noise. A large number of Monte-Carlo simulations are carried out to test out the validity and reliability of each scheme

    High-resolution Direction-of-Arrival estimation

    Get PDF
    Direction of Arrival (DOA) estimation is considered one of the most crucial problems in array signal processing, with considerable research efforts for developing efficient and effective direction-finding algorithms, especially in the transportation industry, where the demand for an effective, real-time, and accurate DOA algorithm is increasing. However, challenges must be addressed before real-world deployment can be realised. Firstly, there is the requirement for fast computational time for real-time detection. Secondly, there is a demand for high-resolution and accurate DOA estimation. In this thesis, two state-of-the-art DOA estimation algorithms are proposed and evaluated to address the challenges. Firstly, a novel covariance matrix reconstruction approach for single snapshot DOA estimation (CbSS) was proposed. CbSS was developed by exploiting the relationship between the theoretical and sample covariance matrices to reduce estimation error for a single snapshot scenario. CbSS can resolve accurate DOAs without requiring lengthy peak searching computational time by computationally changing the received sample covariance matrix. Simulation results have verified that the CbSS technique yields the highest DOA estimation accuracy by up to 25.5% compared to existing methods such as root-MUSIC and the Partial Relaxation approach. Furthermore, CbSS presents negligible bias when compared to the existing techniques in a wide range of scenarios, such as in multiple uncorrelated and coherent signal source environments. Secondly, an adaptive diagonal-loading technique was proposed to improve DOA estimation accuracy without requiring a high computational load by integrating a modified novel and adaptive diagonal-loading method (DLT-DOA) to further improve estimation accuracy. An in-depth simulation performance analysis was conducted to address the challenges, with a comparison against existing state-of-the-art DOA estimation techniques such as EPUMA and MODEX. Simulation results verify that the DLT-DOA technique performs up to 8.5% higher DOA estimation performance in terms of estimation accuracy compared to existing methods with significantly lower computational time. On this basis, the two novel DOA estimation techniques are recommended for usage in real-world scenarios where fast computational time and high estimation accuracy are expected. Further research is needed to identify other factors that could further optimize the algorithms to meet different demands
    corecore