25,974 research outputs found

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Quantum Mechanics Lecture Notes. Selected Chapters

    Full text link
    These are extended lecture notes of the quantum mechanics course which I am teaching in the Weizmann Institute of Science graduate physics program. They cover the topics listed below. The first four chapter are posted here. Their content is detailed on the next page. The other chapters are planned to be added in the coming months. 1. Motion in External Electromagnetic Field. Gauge Fields in Quantum Mechanics. 2. Quantum Mechanics of Electromagnetic Field 3. Photon-Matter Interactions 4. Quantization of the Schr\"odinger Field (The Second Quantization) 5. Open Systems. Density Matrix 6. Adiabatic Theory. The Berry Phase. The Born-Oppenheimer Approximation 7. Mean Field Approaches for Many Body Systems -- Fermions and Boson

    Re-entrant relaxor ferroelectric behaviour in Nb-doped BiFeO 3 –BaTiO 3 ceramics †

    Get PDF
    BiFeO3–BaTiO3 (BF–BT) solid solutions exhibit great promise as the basis for high temperature piezoelectric transducers and energy storage dielectrics, but the fundamental mechanisms governing their functional properties require further clarification. In the present study, both pure and niobium-doped 0.7BF–0.3BT ceramics are synthesized by solid state reaction and their structure–property relationships are systematically investigated. It is shown that substituting a low concentration of Ti with Nb at a level of 0.5 at% increases the resistivity of BF–BT ceramics and facilitates ferroelectric switching at high electric field levels. Stable planar piezoelectric coupling factor values are achieved with a variation from 0.35 to 0.45 over the temperature range from 100 to 430 °C. In addition to the ferroelectric-paraelectric phase transformation at the Curie point (∼430 °C), a frequency-dependent relaxation of the dielectric permittivity and associated loss peak are observed over the temperature range from −50 to +150 °C. These effects are correlated with anomalous enhancement of the remanent polarization and structural (rhombohedral) distortion with increasing temperature, indicating the occurrence of a re-entrant relaxor ferroelectric transformation on cooling. The results of the study provide new insight into the thermal evolution of structure and the corresponding functional properties in BF–BT and related solid solutions

    The place where curses are manufactured : four poets of the Vietnam War

    Get PDF
    The Vietnam War was unique among American wars. To pinpoint its uniqueness, it was necessary to look for a non-American voice that would enable me to articulate its distinctiveness and explore the American character as observed by an Asian. Takeshi Kaiko proved to be most helpful. From his novel, Into a Black Sun, I was able to establish a working pair of 'bookends' from which to approach the poetry of Walter McDonald, Bruce Weigl, Basil T. Paquet and Steve Mason. Chapter One is devoted to those seemingly mismatched 'bookends,' Walt Whitman and General William C. Westmoreland, and their respective anthropocentric and technocentric visions of progress and the peculiarly American concept of the "open road" as they manifest themselves in Vietnam. In Chapter, Two, I analyze the war poems of Walter McDonald. As a pilot, writing primarily about flying, his poetry manifests General Westmoreland's technocentric vision of the 'road' as determined by and manifest through technology. Chapter Three focuses on the poems of Bruce Weigl. The poems analyzed portray the literal and metaphorical descent from the technocentric, 'numbed' distance of aerial warfare to the world of ground warfare, and the initiation of a 'fucking new guy,' who discovers the contours of the self's interior through a set of experiences that lead from from aerial insertion into the jungle to the degradation of burning human feces. Chapter Four, devoted to the thirteen poems of Basil T. Paquet, focuses on the continuation of the descent begun in Chapter Two. In his capacity as a medic, Paquet's entire body of poems details his quotidian tasks which entail tending the maimed, the mortally wounded and the dead. The final chapter deals with Steve Mason's JohnnY's Song, and his depiction of the plight of Vietnam veterans back in "The World" who are still trapped inside the interior landscape of their individual "ghettoes" of the soul created by their war-time experiences

    Modelling uncertainties for measurements of the H → γγ Channel with the ATLAS Detector at the LHC

    Get PDF
    The Higgs boson to diphoton (H → γγ) branching ratio is only 0.227 %, but this final state has yielded some of the most precise measurements of the particle. As measurements of the Higgs boson become increasingly precise, greater import is placed on the factors that constitute the uncertainty. Reducing the effects of these uncertainties requires an understanding of their causes. The research presented in this thesis aims to illuminate how uncertainties on simulation modelling are determined and proffers novel techniques in deriving them. The upgrade of the FastCaloSim tool is described, used for simulating events in the ATLAS calorimeter at a rate far exceeding the nominal detector simulation, Geant4. The integration of a method that allows the toolbox to emulate the accordion geometry of the liquid argon calorimeters is detailed. This tool allows for the production of larger samples while using significantly fewer computing resources. A measurement of the total Higgs boson production cross-section multiplied by the diphoton branching ratio (σ × Bγγ) is presented, where this value was determined to be (σ × Bγγ)obs = 127 ± 7 (stat.) ± 7 (syst.) fb, within agreement with the Standard Model prediction. The signal and background shape modelling is described, and the contribution of the background modelling uncertainty to the total uncertainty ranges from 18–2.4 %, depending on the Higgs boson production mechanism. A method for estimating the number of events in a Monte Carlo background sample required to model the shape is detailed. It was found that the size of the nominal γγ background events sample required a multiplicative increase by a factor of 3.60 to adequately model the background with a confidence level of 68 %, or a factor of 7.20 for a confidence level of 95 %. Based on this estimate, 0.5 billion additional simulated events were produced, substantially reducing the background modelling uncertainty. A technique is detailed for emulating the effects of Monte Carlo event generator differences using multivariate reweighting. The technique is used to estimate the event generator uncertainty on the signal modelling of tHqb events, improving the reliability of estimating the tHqb production cross-section. Then this multivariate reweighting technique is used to estimate the generator modelling uncertainties on background V γγ samples for the first time. The estimated uncertainties were found to be covered by the currently assumed background modelling uncertainty

    Metaphors of London fog, smoke and mist in Victorian and Edwardian Art and Literature

    Get PDF
    Julian Wolfreys has argued that after 1850 writers employed stock images of the city without allowing them to transform their texts. This thesis argues, on the contrary, that metaphorical uses of London fog were complex and subtle during the Victorian and Edwardian periods, at least until 1914. Fog represented, in particular, formlessness and the dissolution of boundaries. Examining the idea of fog in literature, verse, newspaper accounts and journal articles, as well as in the visual arts, as part of a common discourse about London and the state of its inhabitants, this thesis charts how the metaphorical appropriation of this idea changed over time. Four of Dickens's novels are used to track his use of fog as part of a discourse of the natural and unnatural in individual and society, identifying it with London in progressively more negative terms. Visual representations of fog by Constable, Turner, Whistler, Monet, Markino, O'Connor, Roberts and Wyllie and Coburn showed an increasing readiness to engage with this discourse. Social tensions in the city in the 1880s were articulated in art as well as in fiction. Authors like Hay and Barr showed the destruction of London by its fog because of its inhabitants' supposed degeneracy. As the social threat receded, apocalyptic scenarios gave way to a more optimistic view in the work of Owen and others. Henry James used fog as a metaphorical representation of the boundaries of gendered behaviour in public, and the problems faced by women who crossed them. The dissertation also examines fog and individual transgression, in novels and short stories by Lowndes, Stevenson, Conan Doyle and Joseph Conrad. After 1914, fog was no more than a crude signifier of Victorian London in literature, film and, later, television, deployed as a cliche instead of the subtle metaphorical idea discussed in this thesis

    Underwater optical wireless communications in turbulent conditions: from simulation to experimentation

    Get PDF
    Underwater optical wireless communication (UOWC) is a technology that aims to apply high speed optical wireless communication (OWC) techniques to the underwater channel. UOWC has the potential to provide high speed links over relatively short distances as part of a hybrid underwater network, along with radio frequency (RF) and underwater acoustic communications (UAC) technologies. However, there are some difficulties involved in developing a reliable UOWC link, namely, the complexity of the channel. The main focus throughout this thesis is to develop a greater understanding of the effects of the UOWC channel, especially underwater turbulence. This understanding is developed from basic theory through to simulation and experimental studies in order to gain a holistic understanding of turbulence in the UOWC channel. This thesis first presents a method of modelling optical underwater turbulence through simulation that allows it to be examined in conjunction with absorption and scattering. In a stationary channel, this turbulence induced scattering is shown to cause and increase both spatial and temporal spreading at the receiver plane. It is also demonstrated using the technique presented that the relative impact of turbulence on a received signal is lower in a highly scattering channel, showing an in-built resilience of these channels. Received intensity distributions are presented confirming that fluctuations in received power from this method follow the commonly used Log-Normal fading model. The impact of turbulence - as measured using this new modelling framework - on link performance, in terms of maximum achievable data rate and bit error rate is equally investigated. Following that, experimental studies comparing both the relative impact of turbulence induced scattering on coherent and non-coherent light propagating through water and the relative impact of turbulence in different water conditions are presented. It is shown that the scintillation index increases with increasing temperature inhomogeneity in the underwater channel. These results indicate that a light beam from a non-coherent source has a greater resilience to temperature inhomogeneity induced turbulence effect in an underwater channel. These results will help researchers in simulating realistic channel conditions when modelling a light emitting diode (LED) based intensity modulation with direct detection (IM/DD) UOWC link. Finally, a comparison of different modulation schemes in still and turbulent water conditions is presented. Using an underwater channel emulator, it is shown that pulse position modulation (PPM) and subcarrier intensity modulation (SIM) have an inherent resilience to turbulence induced fading with SIM achieving higher data rates under all conditions. The signal processing technique termed pair-wise coding (PWC) is applied to SIM in underwater optical wireless communications for the first time. The performance of PWC is compared with the, state-of-the-art, bit and power loading optimisation algorithm. Using PWC, a maximum data rate of 5.2 Gbps is achieved in still water conditions

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri
    corecore