6 research outputs found

    Higgledy-piggledy sets in projective spaces of small dimension

    Full text link
    This work focuses on higgledy-piggledy sets of kk-subspaces in PG(N,q)\text{PG}(N,q), i.e. sets of projective subspaces that are 'well-spread-out'. More precisely, the set of intersection points of these kk-subspaces with any (N−k)(N-k)-subspace κ\kappa of PG(N,q)\text{PG}(N,q) spans κ\kappa itself. We highlight three methods to construct small higgledy-piggledy sets of kk-subspaces and discuss, for k∈{1,N−2}k\in\{1,N-2\}, 'optimal' sets that cover the smallest possible number of points. Furthermore, we investigate small non-trivial higgledy-piggledy sets in PG(N,q)\text{PG}(N,q), N⩽5N\leqslant5. Our main result is the existence of six lines of PG(4,q)\text{PG}(4,q) in higgledy-piggledy arrangement, two of which intersect. Exploiting the construction methods mentioned above, we also show the existence of six planes of PG(4,q)\text{PG}(4,q) in higgledy-piggledy arrangement, two of which maximally intersect, as well as the existence of two higgledy-piggledy sets in PG(5,q)\text{PG}(5,q) consisting of eight planes and seven solids, respectively. Finally, we translate these geometrical results to a coding- and graph-theoretical context.Comment: [v1] 21 pages, 1 figure [v2] 21 pages, 1 figure: corrected minor details, updated bibliograph

    Strong blocking sets and minimal codes from expander graphs

    Full text link
    A strong blocking set in a finite projective space is a set of points that intersects each hyperplane in a spanning set. We provide a new graph theoretic construction of such sets: combining constant-degree expanders with asymptotically good codes, we explicitly construct strong blocking sets in the (k−1)(k-1)-dimensional projective space over Fq\mathbb{F}_q that have size O(qk)O( q k ). Since strong blocking sets have recently been shown to be equivalent to minimal linear codes, our construction gives the first explicit construction of Fq\mathbb{F}_q-linear minimal codes of length nn and dimension kk, for every prime power qq, for which n=O(qk)n = O (q k). This solves one of the main open problems on minimal codes.Comment: 20 page

    Higgledy-piggledy subspaces and uniform subspace designs

    No full text
    corecore