11,273 research outputs found

    Representation of Aggregation Knowledge in OLAP Systems

    Get PDF
    Decision support systems are mainly based on multidimensional modeling. Using On-Line Analytical Processing (OLAP) tools, decision makers navigate through and analyze multidimensional data. Typically, users need to analyze data at different aggregation levels, using OLAP operators such as roll-up and drill-down. Roll-up operators decrease the details of the measure, aggregating it along the dimension hierarchy. Conversely, drill-down operators increase the details of the measure. As a consequence, dimensions hierarchies play a central role in knowledge representation. More precisely, since aggregation hierarchies are widely used to support data aggregation, aggregation knowledge should be adequately represented in conceptual multidimensional models, and mapped in subsequent logical and physical models. However, current conceptual multidimensional models poorly represent aggregation knowledge, which (1) has a complex structure and dynamics and (2) is highly contextual. In order to account for the characteristics of this knowledge, we propose to represent it with objects and rules. Static aggregation knowledge is represented using UML class diagrams, while rules, which represent the dynamics (i.e. how aggregation may be performed depending on context), are represented using the Production Rule Representation (PRR) language. The latter allows us to incorporate dynamic aggregation knowledge. We argue that this representation of aggregation knowledge allows an early modeling of user requirements in a decision support system project. In order to illustrate the applicability and benefits of our approach, we exemplify the production rules and present an application scenario

    OLAP in Multifunction Multidimensional Database

    Get PDF
    International audienceMost models proposed for modeling multidimensional data warehouses consider a same function to determine how measure values are aggregated. We provide a more flexible conceptual model allowing associating each measure with several aggregation functions according to dimensions, hierarchies, and levels of granularity. This article studies the impacts of this model on the multidimensional table (MT) and the OLAP algebra [11]. It shows how the MT can handle several aggregation functions. It also introduces the changes of the internal mechanism of OLAP operators to take into account several aggregation functions especially if these functions are non-commutative

    Pattern tree-based XOLAP rollup operator for XML complex hierarchies

    Full text link
    With the rise of XML as a standard for representing business data, XML data warehousing appears as a suitable solution for decision-support applications. In this context, it is necessary to allow OLAP analyses on XML data cubes. Thus, XQuery extensions are needed. To define a formal framework and allow much-needed performance optimizations on analytical queries expressed in XQuery, defining an algebra is desirable. However, XML-OLAP (XOLAP) algebras from the literature still largely rely on the relational model. Hence, we propose in this paper a rollup operator based on a pattern tree in order to handle multidimensional XML data expressed within complex hierarchies

    On Integrability and Exact Solvability in Deterministic and Stochastic Laplacian Growth

    Full text link
    We review applications of theory of classical and quantum integrable systems to the free-boundary problems of fluid mechanics as well as to corresponding problems of statistical mechanics. We also review important exact results obtained in the theory of multi-fractal spectra of the stochastic models related to the Laplacian growth: Schramm-Loewner and Levy-Loewner evolutions
    • …
    corecore