5,907 research outputs found

    The augmented marking complex of a surface

    Full text link
    We build an augmentation of the Masur-Minsky marking complex by Groves-Manning combinatorial horoballs to obtain a graph we call the augmented marking complex, AM(S)\mathcal{AM}(S). Adapting work of Masur-Minsky, we prove that AM(S)\mathcal{AM}(S) is quasiisometric to Teichm\"uller space with the Teichm\"uller metric. A similar construction was independently discovered by Eskin-Masur-Rafi. We also completely integrate the Masur-Minsky hierarchy machinery to AM(S)\mathcal{AM}(S) to build flexible families of uniform quasigeodesics in Teichm\"uller space. As an application, we give a new proof of Rafi's distance formula for the Teichm\"uller metric.Comment: 30 pages; significantly rewritten to strengthen main construction

    Shadows of the Planck Scale: The Changing Face of Compactification Geometry

    Get PDF
    By studying the effects of the shape moduli associated with toroidal compactifications, we demonstrate that Planck-sized extra dimensions can cast significant ``shadows'' over low-energy physics. These shadows can greatly distort our perceptions of the compactification geometry associated with large extra dimensions, and place a fundamental limit on our ability to probe the geometry of compactification simply by measuring Kaluza-Klein states. We also discuss the interpretation of compactification radii and hierarchies in the context of geometries with non-trivial shape moduli. One of the main results of this paper is that compactification geometry is effectively renormalized as a function of energy scale, with ``renormalization group equations'' describing the ``flow'' of geometric parameters such as compactification radii and shape angles as functions of energy.Comment: 7 pages, LaTeX, 2 figure

    A model for emergence of space and time

    Get PDF
    We study string field theory (third quantization) of the two-dimensional model of quantum geometry called generalized CDT ("causal dynamical triangulations"). Like in standard non-critical string theory the so-called string field Hamiltonian of generalized CDT can be associated with W-algebra generators through the string mode expansion. This allows us to define an "absolute" vacuum. "Physical" vacua appear as coherent states created by vertex operators acting on the absolute vacuum. Each coherent state corresponds to specific values of the coupling constants of generalized CDT. The cosmological "time" only exists relatively to a given "physical" vacuum and comes into existence before space, which is created because the "physical" vacuum is unstable. Thus each CDT "universe" is created as a "Big Bang" from the absolute vacuum, its time evolution is governed by the CDT string field Hamiltonian with given coupling constants, and one can imagine interactions between CDT universes with different coupling constants ("fourth quantization"

    Integrable hierarchies and the mirror model of local CP1

    Full text link
    We study structural aspects of the Ablowitz-Ladik (AL) hierarchy in the light of its realization as a two-component reduction of the two-dimensional Toda hierarchy, and establish new results on its connection to the Gromov-Witten theory of local CP1. We first of all elaborate on the relation to the Toeplitz lattice and obtain a neat description of the Lax formulation of the AL system. We then study the dispersionless limit and rephrase it in terms of a conformal semisimple Frobenius manifold with non-constant unit, whose properties we thoroughly analyze. We build on this connection along two main strands. First of all, we exhibit a manifestly local bi-Hamiltonian structure of the Ablowitz-Ladik system in the zero-dispersion limit. Secondarily, we make precise the relation between this canonical Frobenius structure and the one that underlies the Gromov-Witten theory of the resolved conifold in the equivariantly Calabi-Yau case; a key role is played by Dubrovin's notion of "almost duality" of Frobenius manifolds. As a consequence, we obtain a derivation of genus zero mirror symmetry for local CP1 in terms of a dual logarithmic Landau-Ginzburg model.Comment: 27 pages, 1 figur

    The local Gromov-Witten theory of CP^1 and integrable hierarchies

    Full text link
    In this paper we begin the study of the relationship between the local Gromov-Witten theory of Calabi-Yau rank two bundles over the projective line and the theory of integrable hierarchies. We first of all construct explicitly, in a large number of cases, the Hamiltonian dispersionless hierarchies that govern the full descendent genus zero theory. Our main tool is the application of Dubrovin's formalism, based on associativity equations, to the known results on the genus zero theory from local mirror symmetry and localization. The hierarchies we find are apparently new, with the exception of the resolved conifold O(-1) + O(-1) -> P1 in the equivariantly Calabi-Yau case. For this example the relevant dispersionless system turns out to be related to the long-wave limit of the Ablowitz-Ladik lattice. This identification provides us with a complete procedure to reconstruct the dispersive hierarchy which should conjecturally be related to the higher genus theory of the resolved conifold. We give a complete proof of this conjecture for genus g<=1; our methods are based on establishing, analogously to the case of KdV, a "quasi-triviality" property for the Ablowitz-Ladik hierarchy at the leading order of the dispersive expansion. We furthermore provide compelling evidence in favour of the resolved conifold/Ablowitz-Ladik correspondence at higher genus by testing it successfully in the primary sector for g=2.Comment: 30 pages; v2: an issue involving constant maps contributions is pointed out in Sec. 3.3-3.4 and is now taken into account in the proofs of Thm 1.3-1.4, whose statements are unchanged. Several typos, formulae, notational inconsistencies have been fixed. v3: typos fixed, minor textual changes, version to appear on Comm. Math. Phy
    • …
    corecore