277 research outputs found

    Analysis of Video Content for a Multi-Layer Navigation of Multimedia Documents

    Get PDF
    This paper describes a set of automatic extraction tools so as to generate a three-layer organization of video documents. The underlying coarse to fine description allows for a fast navigation throughout the document, depending on the degree of details which is desired. Once the time-codes of the individual segments for each layer of the hierarchy have been identified, it is possible to map them into a Description Scheme (DS), which maintains the hierarchy and linear structure of the video document. This structural DS serves the role of a table of content for the multimedia document, the same way it is done in books. The particular interest of the proposed approach lies in the automatic solutions that can be used to generate the different segments at each level of the DS, and in the browsing tool that can be easily derived to navigate throughout the document

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    A Literature Study On Video Retrieval Approaches

    Get PDF
    A detailed survey has been carried out to identify the various research articles available in the literature in all the categories of video retrieval and to do the analysis of the major contributions and their advantages, following are the literature used for the assessment of the state-of-art work on video retrieval. Here, a large number of papershave been studied

    Feature based dynamic intra-video indexing

    Get PDF
    A thesis submitted in partial fulfillment for the degree of Doctor of PhilosophyWith the advent of digital imagery and its wide spread application in all vistas of life, it has become an important component in the world of communication. Video content ranging from broadcast news, sports, personal videos, surveillance, movies and entertainment and similar domains is increasing exponentially in quantity and it is becoming a challenge to retrieve content of interest from the corpora. This has led to an increased interest amongst the researchers to investigate concepts of video structure analysis, feature extraction, content annotation, tagging, video indexing, querying and retrieval to fulfil the requirements. However, most of the previous work is confined within specific domain and constrained by the quality, processing and storage capabilities. This thesis presents a novel framework agglomerating the established approaches from feature extraction to browsing in one system of content based video retrieval. The proposed framework significantly fills the gap identified while satisfying the imposed constraints of processing, storage, quality and retrieval times. The output entails a framework, methodology and prototype application to allow the user to efficiently and effectively retrieved content of interest such as age, gender and activity by specifying the relevant query. Experiments have shown plausible results with an average precision and recall of 0.91 and 0.92 respectively for face detection using Haar wavelets based approach. Precision of age ranges from 0.82 to 0.91 and recall from 0.78 to 0.84. The recognition of gender gives better precision with males (0.89) compared to females while recall gives a higher value with females (0.92). Activity of the subject has been detected using Hough transform and classified using Hiddell Markov Model. A comprehensive dataset to support similar studies has also been developed as part of the research process. A Graphical User Interface (GUI) providing a friendly and intuitive interface has been integrated into the developed system to facilitate the retrieval process. The comparison results of the intraclass correlation coefficient (ICC) shows that the performance of the system closely resembles with that of the human annotator. The performance has been optimised for time and error rate

    A Survey of Deep Learning in Sports Applications: Perception, Comprehension, and Decision

    Full text link
    Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This paper presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. Firstly, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Secondly, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications

    HIERARCHICAL LEARNING OF DISCRIMINATIVE FEATURES AND CLASSIFIERS FOR LARGE-SCALE VISUAL RECOGNITION

    Get PDF
    Enabling computers to recognize objects present in images has been a long standing but tremendously challenging problem in the field of computer vision for decades. Beyond the difficulties resulting from huge appearance variations, large-scale visual recognition poses unprecedented challenges when the number of visual categories being considered becomes thousands, and the amount of images increases to millions. This dissertation contributes to addressing a number of the challenging issues in large-scale visual recognition. First, we develop an automatic image-text alignment method to collect massive amounts of labeled images from the Web for training visual concept classifiers. Specif- ically, we first crawl a large number of cross-media Web pages containing Web images and their auxiliary texts, and then segment them into a collection of image-text pairs. We then show that near-duplicate image clustering according to visual similarity can significantly reduce the uncertainty on the relatedness of Web images’ semantics to their auxiliary text terms or phrases. Finally, we empirically demonstrate that ran- dom walk over a newly proposed phrase correlation network can help to achieve more precise image-text alignment by refining the relevance scores between Web images and their auxiliary text terms. Second, we propose a visual tree model to reduce the computational complexity of a large-scale visual recognition system by hierarchically organizing and learning the classifiers for a large number of visual categories in a tree structure. Compared to previous tree models, such as the label tree, our visual tree model does not require training a huge amount of classifiers in advance which is computationally expensive. However, we experimentally show that the proposed visual tree achieves results that are comparable or even better to other tree models in terms of recognition accuracy and efficiency. Third, we present a joint dictionary learning (JDL) algorithm which exploits the inter-category visual correlations to learn more discriminative dictionaries for image content representation. Given a group of visually correlated categories, JDL simul- taneously learns one common dictionary and multiple category-specific dictionaries to explicitly separate the shared visual atoms from the category-specific ones. We accordingly develop three classification schemes to make full use of the dictionaries learned by JDL for visual content representation in the task of image categoriza- tion. Experiments on two image data sets which respectively contain 17 and 1,000 categories demonstrate the effectiveness of the proposed algorithm. In the last part of the dissertation, we develop a novel data-driven algorithm to quantitatively characterize the semantic gaps of different visual concepts for learning complexity estimation and inference model selection. The semantic gaps are estimated directly in the visual feature space since the visual feature space is the common space for concept classifier training and automatic concept detection. We show that the quantitative characterization of the semantic gaps helps to automatically select more effective inference models for classifier training, which further improves the recognition accuracy rates

    Multi-modal surrogates for retrieving and making sense of videos: is synchronization between the multiple modalities optimal?

    Get PDF
    Video surrogates can help people quickly make sense of the content of a video before downloading or seeking more detailed information. Visual and audio features of a video are primary information carriers and might become important components of video retrieval and video sense-making. In the past decades, most research and development efforts on video surrogates have focused on visual features of the video, and comparatively little work has been done on audio surrogates and examining their pros and cons in aiding users' retrieval and sense-making of digital videos. Even less work has been done on multi-modal surrogates, where more than one modality are employed for consuming the surrogates, for example, the audio and visual modalities. This research examined the effectiveness of a number of multi-modal surrogates, and investigated whether synchronization between the audio and visual channels is optimal. A user study was conducted to evaluate six different surrogates on a set of six recognition and inference tasks to answer two main research questions: (1) How do automatically-generated multi-modal surrogates compare to manually-generated ones in video retrieval and video sense-making? and (2) Does synchronization between multiple surrogate channels enhance or inhibit video retrieval and video sense-making? Forty-eight participants participated in the study, in which the surrogates were measured on the the time participants spent on experiencing the surrogates, the time participants spent on doing the tasks, participants' performance accuracy on the tasks, participants' confidence in their task responses, and participants' subjective ratings on the surrogates. On average, the uncoordinated surrogates were more helpful than the coordinated ones, but the manually-generated surrogates were only more helpful than the automatically-generated ones in terms of task completion time. Participants' subjective ratings were more favorable for the coordinated surrogate C2 (Magic A + V) and the uncoordinated surrogate U1 (Magic A + Storyboard V) with respect to usefulness, usability, enjoyment, and engagement. The post-session questionnaire comments demonstrated participants' preference for the coordinated surrogates, but the comments also revealed the value of having uncoordinated sensory channels
    corecore