1,145 research outputs found

    Cognitive Activity Support Tools: Design of the Visual Interface

    Get PDF
    This dissertation is broadly concerned with interactive computational tools that support the performance of complex cognitive activities, examples of which are analytical reasoning, decision making, problem solving, sense making, forecasting, and learning. Examples of tools that support such activities are visualization-based tools in the areas of: education, information visualization, personal information management, statistics, and health informatics. Such tools enable access to information and data and, through interaction, enable a human-information discourse. In a more specific sense, this dissertation is concerned with the design of the visual interface of these tools. This dissertation presents a large and comprehensive theoretical framework to support research and design. Issues treated herein include interaction design and patterns of interaction for cognitive and epistemic support; analysis of the essential properties of interactive visual representations and their influences on cognitive and perceptual processes; an analysis of the structural components of interaction and how different operational forms of interaction components affect the performance of cognitive activities; an examination of how the information-processing load should be distributed between humans and tools during the performance of complex cognitive activities; and a categorization of common visualizations according to their structure and function, and a discussion of the cognitive utility of each category. This dissertation also includes a chapter that describes the design of a cognitive activity support tool, as guided by the theoretical contributions that comprise the rest of the dissertation. Those that may find this dissertation useful include researchers and practitioners in the areas of data and information visualization, visual analytics, medical and health informatics, data science, journalism, educational technology, and digital games

    Multi-View Ontology Explorer (MOE): Interactive Visual Exploration of Ontologies

    Get PDF
    An ontology is an explicit specification of a conceptualization. This specification consists of a common vocabulary and information structure of a domain. Ontologies have applications in many fields to semantically link information in a standardized manner. In these fields, it is often crucial for both expert and non-expert users to quickly grasp the contents of an ontology; and to achieve this, many ontology tools implement visualization components. There are many past works on ontology visualization, and most of these tools are adapted from tree and graph based visualization techniques (e.g. treemaps, node-link graphs, and 3D interfaces). However, due to the enormous size of ontologies, these existing tools have their own shortcomings when dealing information overload, usually resulting in clutter and occlusion on the screen. In this thesis, we propose a set of novel visualizations and interactions to visualize very large ontologies. We design 5 dynamically linked visualizations that focus on a different level of abstraction individually. These different levels of abstraction start from a high-level overview down to a low-level entity. In addition, these visualizations collectively visualize landmarks, routes, and survey knowledge to support the formation of mental models. Search and save features are implemented to support on-demand and guided exploration. Finally, we implement our design as a web application

    An Automat for the Semantic Processing of Structured Information

    Get PDF
    Using the database of the PuertoTerm project, an indexing system based on the cognitive model of Brigitte Enders was built. By analyzing the cognitive strategies of three abstractors, we built an automat that serves to simulate human indexing processes. The automat allows the texts integrated in the system to be assessed, evaluated and grouped by means of the bipartite spectral graph partitioning algorithm, which also permits visualization of the terms and the documents. The system features an ontology and a database to enhance its operativity. As a result of the application, we achieved better rates of exhaustivity in the indexing of documents, as well as greater precision and retrieval of information, with high levels of efficiency.Comment: IEEE Intelligent Systems Design and Applications, 2009. ISDA '09. Ninth International Conference on Date of Conference: Nov. 30 2009-Dec. 2 2009, Page(s): 85 - 8

    Proceedings of the international conference on cooperative multimodal communication CMC/95, Eindhoven, May 24-26, 1995:proceedings

    Get PDF

    Making Sense of Document Collections with Map-Based Visualizations

    Get PDF
    As map-based visualizations of documents become more ubiquitous, there is a greater need for them to support intellectual and creative high-level cognitive activities with collections of non-cartographic materials -- documents. This dissertation concerns the conceptualization of map-based visualizations as tools for sensemaking and collection understanding. As such, map-based visualizations would help people use georeferenced documents to develop understanding, gain insight, discover knowledge, and construct meaning. This dissertation explores the role of graphical representations (such as maps, Kohonen maps, pie charts, and other) and interactions with them for developing map-based visualizations capable of facilitating sensemaking activities such as collection understanding. While graphical representations make document collections more perceptually and cognitively accessible, interactions allow users to adapt representations to users’ contextual needs. By interacting with representations of documents or collections and being able to construct representations of their own, people are better able to make sense of information, comprehend complex structures, and integrate new information into their existing mental models. In sum, representations and interactions may reduce cognitive load and consequently expedite the overall time necessary for completion of sensemaking activities, which typically take much time to accomplish. The dissertation proceeds in three phases. The first phase develops a conceptual framework for translating ontological properties of collections to representations and for supporting visual tasks by means of graphical representations. The second phase concerns the cognitive benefits of interaction. It conceptualizes how interactions can help people during complex sensemaking activities. Although the interactions are explained on the example of a prototype built with Google Maps, they are independent iv of Google Maps and can be applicable to various other technologies. The third phase evaluates the utility, analytical capabilities and usability of the additional representations when users interact with a visualization prototype – VIsual COLlection EXplorer. The findings suggest that additional representations can enhance understanding of map-based visualizations of library collections: specifically, they can allow users to see trends, gaps, and patterns in ontological properties of collections

    From tool to instrument: An experiential analysis of interacting with Information Visualization.

    Get PDF
    Information Visualizations (InfoVis) are tools that represent huge amount of abstract data visually on a computer screen. These tools are not reaching the users since constituents of good InfoVis design are still an unknown. In this thesis I argue that good design is one that delivers positive experiences due to the subjectivity of the knowledge gaining processes. Hence, what constitutes a positive experience is the focus of this research. The application domain chosen was the Academic Literature Domain (ALD). ALD InfoVis tools exist however they do not cater for users' requirements or interface usability, both of which are crucial for a better experience. As a result, an ALD InfoVis tool was created following a User Centred Design (UCD) approach, starting with requirements and ending with usability. The requirements were first generated based on a qualitative study from which it became clear that researchers equate authors with their publications and position them in terms of the ideas they portray. Based on this, the tool was designed and implemented. The tool's usability was then evaluated through a set of low and high level tasks. Low-level tasks target the visual syntax whereas high-level tasks tap into the generated semantics. The latter allowed for subjective reasoning and interaction, and were therefore used as the basis of the experiential study. The experiential study captured users' experiences by relying on a Grounded Theory (GT) analysis. This study resulted in the generation of a base theory of InfoVis interaction that properly fitted within the context of the instrumental genesis theoretical framework which argues for the design of instruments not tools, where instruments are mental appropriations of tools. The theoretical approach applied by this research has value across InfoVis even if not tailored for evaluation

    Investigating Analytics Dashboards’ Support for the Value-based Healthcare Delivery Model

    Get PDF
    Improving the value of care is one of the essential aspects of Value-Based Healthcare (VBHC) model today. VBHC is a new HC delivery model which is centered on patient health outcomes and improvements. There is anecdotal evidence that the use of decision aid tools like dashboards can play a significant role in the successful implementation of VBHC models. However, there has been little or no systematic studies and reviews to establish the extent to which analytics dashboards are used to support patient care in a VBHC delivery context. This paper bridges this knowledge gap through a systematic review of the existing literature on dashboards in the HC domain. Our study reveals dashboard capabilities as an enabling tool for value improvements and provides insight into the design of dashboards. This study concludes by highlighting a few gaps, question, and need for research in the future

    From data to knowledge: Tableau dashboards as boundary objects in the knowledge ecology of a university

    Get PDF
    Information dashboards are increasingly important tools for organisations, helping them exploit data as an asset and make informed decisions. Existing visualisation design research stemming from the cognitive and perception sciences has tended to focus on the cognitive augmenting benefits of information visualizations for the individual in trying to accomplish a task, and make recommendations for design based on perceptual and cognitive principles. However, understanding the use to which information visualisations (in this case dashboards) are put in the management and operations of a large hierarchical bureaucracy that typify the modern organisation responding to complex and dynamic environments, is important for gaining insights that will guide their design, adoption and adaption in these organisations. An ethnographic inspired study was performed at a University who were in the process of adopting Tableau as a management reporting tool, during a period in which there were significant changes to HE environment. The study reports on the evolution of the dashboards, as mediating artefacts, in which the social process of designing takes place. Significantly, allowing communities of knowing to be intimately involved in the building of their own dashboards (through the concept of self-service) allows the dashboards to support the social sense-making roles of “perspective making and perspective taking”. The extent to which the dashboards are able to achieve this is the extent to which they are deemed useful in transforming data into effective actionable knowledge

    A Tangible User Interface for Interactive Data Visualisation

    Get PDF
    Information visualisation (infovis) tools are integral for the analysis of large abstract data, where interactive processes are adopted to explore data, investigate hypotheses and detect patterns. New technologies exist beyond post-windows, icons, menus and pointing (WIMP), such as tangible user interfaces (TUIs). TUIs expand on the affordance of physical objects and surfaces to better exploit motor and perceptual abilities and allow for the direct manipulation of data. TUIs have rarely been studied in the field of infovis. The overall aim of this thesis is to design, develop and evaluate a TUI for infovis, using expression quantitative trait loci (eQTL) as a case study. The research began with eliciting eQTL analysis requirements that identified high- level tasks and themes for quantitative genetic and eQTL that were explored in a graphical prototype. The main contributions of this thesis are as follows. First, a rich set of interface design options for touch and an interactive surface with exclusively tangible objects were explored for the infovis case study. This work includes characterising touch and tangible interactions to understand how best to use them at various levels of metaphoric representation and embodiment. These design were then compared to identify a set of options for a TUI that exploits the advantages of touch and tangible interaction. Existing research shows computer vision commonly utilised as the TUI technology of choice. This thesis contributes a rigorous technical evaluation of another promising technology, micro-controllers and sensors, as well as computer vision. However the findings showed that some sensors used with micro-controllers are lacking in capability, so computer vision was adopted for the development of the TUI. The majority of TUIs for infovis are presented as technical developments or design case studies, but lack formal evaluation. The last contribution of this thesis is a quantitative and qualitative comparison of the TUI and touch UI for the infovis case study. Participants adopted more effective strategies to explore patterns and performed fewer unnecessary analyses with the TUI, which led to significantly faster performance. Contrary to common belief bimanual interactions were infrequently used for both interfaces, while epistemic actions were strongly promoted for the TUI and contributed to participants’ efficient exploration strategies

    Linked democracy : foundations, tools, and applications

    Get PDF
    Chapter 1Introduction to Linked DataAbstractThis chapter presents Linked Data, a new form of distributed data on theweb which is especially suitable to be manipulated by machines and to shareknowledge. By adopting the linked data publication paradigm, anybody can publishdata on the web, relate it to data resources published by others and run artificialintelligence algorithms in a smooth manner. Open linked data resources maydemocratize the future access to knowledge by the mass of internet users, eitherdirectly or mediated through algorithms. Governments have enthusiasticallyadopted these ideas, which is in harmony with the broader open data movement
    • 

    corecore