3,461 research outputs found

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    A game-theoretic and hybrid genetic meta-heuristics model for security-assured scheduling of independent jobs in computational grids

    Get PDF
    Scheduling independent tasks in Computational Grids commonly arises in many Grid-enabled large scale applications. Much of current research in this domain is focused on the improvement of the efficiency of the Grid schedulers, both at global and local levels, which is the basis for Grid systems to leverage large computing capacities. However, unlike traditional scheduling, in Grid systems security requirements are very important to scheduling tasks/applications to Grid resources. The objective is thus to achieve efficient and secure allocation of tasks to machines. In this paper we propose a new model for secure scheduling at the Grid sites by combining game-theoretic and genetic-based meta-heuristic approaches. The game-theoretic model takes into account the realistic feature that Grid users usually perform independently of each other. The scheduling problem is then formalized as a noncooperative non-zero sum game with Nash equilibria as the solutions. The game cost function is minimized, at global and user levels, by using four genetic-based hybrid meta-heuristics. We have evaluated the proposed model through a static benchmark of instances, for which we have measured two basic metrics, namely the makespan and flowtime. The obtained results suggest that it is more resilient for the Grid users (and local schedulers) to tolerate some job delays defined as additional scheduling cost due to security requirements instead of taking a risk of allocating at unreliable resources.Peer ReviewedPostprint (published version

    Many-Task Computing and Blue Waters

    Full text link
    This report discusses many-task computing (MTC) generically and in the context of the proposed Blue Waters systems, which is planned to be the largest NSF-funded supercomputer when it begins production use in 2012. The aim of this report is to inform the BW project about MTC, including understanding aspects of MTC applications that can be used to characterize the domain and understanding the implications of these aspects to middleware and policies. Many MTC applications do not neatly fit the stereotypes of high-performance computing (HPC) or high-throughput computing (HTC) applications. Like HTC applications, by definition MTC applications are structured as graphs of discrete tasks, with explicit input and output dependencies forming the graph edges. However, MTC applications have significant features that distinguish them from typical HTC applications. In particular, different engineering constraints for hardware and software must be met in order to support these applications. HTC applications have traditionally run on platforms such as grids and clusters, through either workflow systems or parallel programming systems. MTC applications, in contrast, will often demand a short time to solution, may be communication intensive or data intensive, and may comprise very short tasks. Therefore, hardware and software for MTC must be engineered to support the additional communication and I/O and must minimize task dispatch overheads. The hardware of large-scale HPC systems, with its high degree of parallelism and support for intensive communication, is well suited for MTC applications. However, HPC systems often lack a dynamic resource-provisioning feature, are not ideal for task communication via the file system, and have an I/O system that is not optimized for MTC-style applications. Hence, additional software support is likely to be required to gain full benefit from the HPC hardware

    The Contemporary Affirmation of Taxonomy and Recent Literature on Workflow Scheduling and Management in Cloud Computing

    Get PDF
    The Cloud computing systemspreferred over the traditional forms of computing such as grid computing, utility computing, autonomic computing is attributed forits ease of access to computing, for its QoS preferences, SLA2019;s conformity, security and performance offered with minimal supervision. A cloud workflow schedule when designed efficiently achieves optimalre source sage, balance of workloads, deadline specific execution, cost control according to budget specifications, efficient consumption of energy etc. to meet the performance requirements of today2019; svast scientific and business requirements. The businesses requirements under recent technologies like pervasive computing are motivating the technology of cloud computing for further advancements. In this paper we discuss some of the important literature published on cloud workflow scheduling

    Selfish grids: Game-theoretic modeling and NAS/PSA benchmark evaluation

    Get PDF
    Selfish behaviors of individual machines in a Grid can potentially damage the performance of the system as a whole. However, scrutinizing the Grid by taking into account the noncooperativeness of machines is a largely unexplored research problem. In this paper, we first present a new hierarchical game-theoretic model of the Grid that matches well with the physical administrative structure in real-life situations. We then focus on the impact of selfishness in intrasite job execution mechanisms. Based on our novel utility functions, we analytically derive the Nash equilibrium and optimal strategies for the general case. To study the effects of different strategies, we have also performed extensive simulations by using a well-known practical scheduling algorithm over the NAS (Numerical Aerodynamic Simulation) and the PSA (Parameter Sweep Application) workloads. We have studied the overall job execution performance of the Grid system under a wide range of parameters. Specifically, we find that the Optimal selfish strategy significantly outperforms the Nash selfish strategy. Our performance evaluation results can serve as a valuable reference for designing appropriate strategies in a practical Grid. © 2007 IEEE.published_or_final_versio
    corecore