11,089 research outputs found

    Transport-Based Neural Style Transfer for Smoke Simulations

    Full text link
    Artistically controlling fluids has always been a challenging task. Optimization techniques rely on approximating simulation states towards target velocity or density field configurations, which are often handcrafted by artists to indirectly control smoke dynamics. Patch synthesis techniques transfer image textures or simulation features to a target flow field. However, these are either limited to adding structural patterns or augmenting coarse flows with turbulent structures, and hence cannot capture the full spectrum of different styles and semantically complex structures. In this paper, we propose the first Transport-based Neural Style Transfer (TNST) algorithm for volumetric smoke data. Our method is able to transfer features from natural images to smoke simulations, enabling general content-aware manipulations ranging from simple patterns to intricate motifs. The proposed algorithm is physically inspired, since it computes the density transport from a source input smoke to a desired target configuration. Our transport-based approach allows direct control over the divergence of the stylization velocity field by optimizing incompressible and irrotational potentials that transport smoke towards stylization. Temporal consistency is ensured by transporting and aligning subsequent stylized velocities, and 3D reconstructions are computed by seamlessly merging stylizations from different camera viewpoints.Comment: ACM Transaction on Graphics (SIGGRAPH ASIA 2019), additional materials: http://www.byungsoo.me/project/neural-flow-styl

    About the nature of Kansei information, from abstract to concrete

    Get PDF
    Designer’s expertise refers to the scientific fields of emotional design and kansei information. This paper aims to answer to a scientific major issue which is, how to formalize designer’s knowledge, rules, skills into kansei information systems. Kansei can be considered as a psycho-physiologic, perceptive, cognitive and affective process through a particular experience. Kansei oriented methods include various approaches which deal with semantics and emotions, and show the correlation with some design properties. Kansei words may include semantic, sensory, emotional descriptors, and also objects names and product attributes. Kansei levels of information can be seen on an axis going from abstract to concrete dimensions. Sociological value is the most abstract information positioned on this axis. Previous studies demonstrate the values the people aspire to drive their emotional reactions in front of particular semantics. This means that the value dimension should be considered in kansei studies. Through a chain of value-function-product attributes it is possible to enrich design generation and design evaluation processes. This paper describes some knowledge structures and formalisms we established according to this chain, which can be further used for implementing computer aided design tools dedicated to early design. These structures open to new formalisms which enable to integrate design information in a non-hierarchical way. The foreseen algorithmic implementation may be based on the association of ontologies and bag-of-words.AN

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given

    Determining the Number of Batik Motif Object based on Hierarchical Symmetry Detection Approach

    Get PDF
    In certain conditions, symmetry can be used to describe objects in the batik motif efficiently. Symmetry can be defined based on three linear transformations of dimension n in Euclidian space in the form of translation and rotation. This concept is useful for detecting objects and recognising batik motifs. In this study, we conducted a study of the symmetry effect to determine the number of batik motif objects in an image using symmetry algorithm through a hierarchical approach. The process focuses on determining the intersection line of the batik motif object. Furthermore, by utilising intersection line information for bilateral and rotational symmetry, the number of objects carried out recursively is determined. The results obtained are numbers of batik motif objects through symmetry detection. This information will be used as a reference for batik motif detection. Based on the experimental results, there are some errors caused by the axis of the symmetry line that is not appropriate due to the characteristics of batik motifs. The problem is solved by adding several rules to detect symmetry line and to determine the number of objects. The additional rules increase the average accuracy of the number of object detection from 66.21% to 86.19% (19.99% increase)

    Adaptive, locally-linear models of complex dynamics

    Get PDF
    The dynamics of complex systems generally include high-dimensional, non-stationary and non-linear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties we detail a new approach based on local linear models within windows determined adaptively from the data. While the dynamics within each window are simple, consisting of exponential decay, growth and oscillations, the collection of local parameters across all windows provides a principled characterization of the full time series. To explore the resulting model space, we develop a novel likelihood-based hierarchical clustering and we examine the eigenvalues of the linear dynamics. We demonstrate our analysis with the Lorenz system undergoing stable spiral dynamics and in the standard chaotic regime. Applied to the posture dynamics of the nematode C.elegansC. elegans our approach identifies fine-grained behavioral states and model dynamics which fluctuate close to an instability boundary, and we detail a bifurcation in a transition from forward to backward crawling. Finally, we analyze whole-brain imaging in C.elegansC. elegans and show that the stability of global brain states changes with oxygen concentration.Comment: 25 pages, 16 figure
    • …
    corecore